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The differential cross-section is calculated for the bremsstrahlung of photons from
magnetic moments of protons or neutrons decelerated in an external static nuclear (vector)
potential. The lowest-order perturbative approximation is used (both with respect to the
magnetic moment and external potential). The recent hypothesis of a new magnetic-type
interaction of nucleons is also considered in the context of possible bremsstrahlung of a new
kind from the corresponding nucleon magnetic-type moments.

PACS numbers: 12.20.Ds, 12.90.+b

Consider a nucleon N = p, n decelerated in an external static nuclear (vector) potential
Va(¥), where
T
n(x) = Jaﬁ‘f Va(@)e™ ¢y

(for instance, Vp(X) = F(gh/dnr)exp (—Mr) if V(@) = Lgn/(a*+M?). Then, beside
the electric charge e of the proton also the magnetic moment py(e/2my) of the proton or
neutron will produce the bremsstrahlung of photons according to the effective field equations

("0, ~ my)¥Pn(x)

= [7°Va(X) +eny*4,(x) +F in(e/2my)e” F , (x)]¥(%) 2
and

O A() = = enTn(x)" En(x) — pin(el2m)0, [ Fn(x)* P()], 3
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where ¢** = (i/2) [y*, y"] with (#*) = (B, pa). Here, ey = e or 0 and py = p, or y, for
the proton or neutron, respectively, where o = e?/4n ~ 1/137." The external potential
Vn(X) is here intended to describe nuclear interactions of the nucleon effectively.

In the case of proton, the usual Dirac equation i.c., Eq. (2) without the Pauli term
proportional to py, includes implicitly (as a relativistic effect) the coupling of F, (x) to the
normal magnetic moment e/2m, (plus eventually the tiny anomalous magnetic moment
implied by purely electromagnetic radiative corrections to the point-like proton). Thus,
the magnetic moment py(e/2my) in Eq. (3) is to be identified with the large phenomenolo-
gical anomalous magnetic moment which is of a non-purely electromagnetic structural
origin. Therefore, p, ~ 2.8-1 = 1.8 and 'y, =~ —1.9. .

The differential cross-section for the bremsstrahlung of a photon k= (w, k) from
the magnetic moment of a nucleon p, = (E,, p) = p; = (E, Py) is given in the lowest
order (with respect both to uy(e/2m,) and the external potential) by the formula

ds  pma olpl o,
dod2,dQ,, (2n)* 4/p,) IMal”, @
where
My = (Vid@idp) [ié(k)x Loty o_poZitin i?(k)k] o) ®)
3 (7 ’ 2 p' R k . 2p‘ . k 1\, ’

with © = E,~E and £ = p,+g—p, (note that 32 = —gq?, where k = p,+q—p,). Here,
k2 0, k:e=0, e2= —1 and (F—mu =0, p* = m?, iiu=1. Hence, ¥2 =0,
= ~¢K, 2= ~1and #? = my. Of course,a = y*¢,. For the unpolarized photon and

nuCIeon one gets
dwdﬂ.dﬂ =% Z Z dwdﬂ,dﬂ ©

where 3° denotes the summation over two physical polarizations of the photon, etc.
: &
A standard but lengthy calculation gives

My = Vi@idp) (ﬂTf’—;”—“ xy°+r°x,‘3‘-':—'_k"3‘—’) ui() Q)
and
W@ ) ¢ ST A S B S S SEIPS sodiiies
F) ) M = g P PGBl

e ugy

~GrR) G- B+ — [ﬁf @ B 5 - Gy )’]—%[iri—(ﬁ,-fc)‘f(ink”)]"},(8)
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where £ = kfIk|. In the gauge invariant Eq. (5) the Coulomb gauge e = (0, ¢) (where
7°§ = —¢y°) was used to obtain Eq. (7) and then Eq. (8). Thus, Egs. (6), (4) and (8) lead
to the following lowest-order differential cross-section for the bremsstrahlung from the
anomalous magnetic moment of a nucleon:

da o wE, V2@

d0dQ4Q,  @nY 4Ep, (1—5;- k) (1-5;- k)

E - E; - e * Dy — (D¢ - k) (©
x {Ej [vf (@ B)*1+ E, [v? = @: - B*]=2[ve - D= (2 - k) (0, - )]

2E,Ei 2EfEi

[v -G, B[} -6, B*]-

[v 0,~ (0 k) @; - B)]? } )]
where ¥ = ﬁ/E and v = [7|. Introducing the angles 0;, , between k and p,, By, respectively,
and the angle ¢ between the planes of %, p; and K, p;, one can write
v;-k =v,c080, vk = v;cos8p
D¢ - 3, = veoy(sin O sin ; cos ¢ +cos 0, cos 6,) (10)
and
dQ, = sin 0,d6,dd,, dRQ,, = sin 0,d0,d, 1)

where ¢, is the azimuthal angle of k around the axis of ;- Then, integrating Eq. (9) (trivially)
over ¢, one gets the formula

do _ et wEev; [VN(ZI.)/“”]2
dwd cos 0,d cos 0,d¢ 21 4Ep; (1—v;cos B;) (1—v, cos 6)

Ef . 2 Ei . 2 . .
X . (vg sin G+ E (v, sin 0,)* — 2vgv; sin 6, sin 6; cos ¢
i 3

2E:E

+ == (vy; sin 6; sin 6; sin ¢)2] . (12)
my

This is in our case the counterpart of the well-known Bethe-Heitler formula [1] describing

in the lowest order (with respect both to e and the external potential) the bremsstrahlung

from the electric charge of an electron decelerated in an external Coulomb potential.

For 4 proton decelerated in an external static nuclear (vector) potential the corresponding
Bethe-Heitler formula takes the form:

dGgy a Eu, 2
P 4
dwd cos 0, cos 0,d¢p 21 wEy, [V(@)/4r]

vesin 8 \? v, sin 0, \?
x | B2 -G | ——— ) +@E} - | ——
[( i1 )(l—vfcos 6; +@E —47) 1—v, cos 0,
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20;0, sin 9{ sin 0; Ccos ¢
(1 "‘vf Cos ef) (1 —vi COSs ei)

—(4EE;—3* +20%)

R e a2
Note that
= (.-5:'?'7E —p)? = 0> +20(Ev; cos 6~ E,v; cos )
+E vf +E}? —2E,Eiv;vl(sin 0, sin 0, cos ¢ +cos ; cos 0)). 14)

Of course, in the general lowest-order proton bremsstrahlung formula there appears also
an interference term- of the electric charge and anomalous magnetic moment.
In the nonrelativistic approximation, where v; <1 (and then also v < 1), Eq. (12)
assumes the form
dé IR wvf

L e
ded cos B¢d cos §,dp MR 27 [ N@)/4m)

x [(vg sin 85)* +(v; sin 0;)° —2v; sin 0; sin 6; cos ¢]; (15)
where 5 = ‘/mN and ¢ = P—p, the latter relation following from the inequality
kK=o = ( -9 Y2my < | Pil—|pl. 1t is interesting to observe that in the nonrelativ-

istic approxxmatlon the proton Bethe-Heitler formula (13) reduces to

dégy a 4mlo,
dwd cos 6¢d cos 0,d¢o NR 27

x [(2y sin 0%+ (v, sin 8;)2 — 20,0, sin of sin 6, cos ¢]. (16)

[Vp( )/ 4"]2

‘Note that in the nonrelativistic approximation Eq. (14) gives
T % (Ef_ii)z
= mg[vf +v} —2vw,(sin 6; sin 9; cos ¢+ cos 8 cos 6;)]. 17

The angular dependence in Egs. (15) and (16) is the same.
Thus, the ratio of the nonrelativistic cross-sections for the bremsstrahlung from the
magnetic moment of a neutron and from the electric charge of a proton is of the order of

, O Va@ _ o, o
® Tom2 VA@) ™ 16m2

P

o), (18)

where co2 = mz(v —v?)/4. Of course, in Eq. (18) the same kinematic region is considered

for both processes and m, is put equal to m,.
It was speculated recently [2, 3] that, in the case of a hypothesis of quarks composed
from some more elementary constituents bound by means of a new Abelian gauge field,
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the nucleons should display new magnetic-type moments p$(e™/2my) coupled to a magnet-
ic-type part of this hypothetical gauge field. Here, the superscript (u) refers to the prefix
“ultra”, convenient to distinguish pg” (the “ultramagnetic moment” in units of ¢®)/2my)
and e™ (the “ultraelectric charge” or “ultracharge”) from py and e, respectively, as well
as the new Abelian gauge field (the “ultraelectromagnetic field””) from the familiar electro-
magnetic field. In this case a decelerated nucleon, though expected to be neutral with respect
to the ultracharge: e’ = 0, should emit the “ultrabremsstrahlung” of new gauge vector
bosons (¢ uItraphotons”) from its ultramagnetic moment. If both for u{’(e®™/2my) and
the potential Fy(x) the lowest-order perturbative approximation could be used to estimate
such a process, the corresponding differential cross-section would be given by Eq. (12)
(or, in the non-relativistic appro;umatlon by Eg. (15)), where now py and « should be
replaced by pu{ and «™ = e™?4x, respectively.

Thus, the ratio of the nonrelativistic cross-sections for the ultrabremsstrahlung from
the ultramagnetic moment of a proton and the usual bremsstrahlung from the proton
electric charge would be of the order of

(w) 2
wn?® @

B " em?

(19)

where w? is given as in Eq. (18). For instance, if u{” = O(1) and «™ = O(1), the ratio
(19) is 8(@¥m)O(1) = 2(vi —v7)20(1).

Note finally that the ultrabremsstrahlung from ultramagnetic moments of relativistic
protons would be a component of the beamstrahlung in proton accelerators.

I am indebted to Ryszard Sosnowski and Stawomir Wycech for many discussions
and suggestions.

APPENDIX

From the phenomenological point of view it may be interesting to consider in the
place of the external vector potential ¥y(x) the more general external interaction energy
Va(%)+7°Sn(X), where Sy(X) is an external scalar potential. Both Vy(X) and Sy(X) may
be complex. Then, the formula (12) transits into the more complicated form

dé _ u_Na_ wEq; .
dwd cos Gid cos 8,dd  2m 4Ep;
1 - g o -
X @y {IVN@ A+ V(@SN + VR (DS@]B + Sn@)I*C}, (A1)

where

1
= (1—p; cos 6;) (1—v, cos O) | E

E; . E
[ (v cos 8;)%+ —3 (v; cos 6,)*
f

N

2E.E
~ 20, sin 6, sin §; cos ¢+ — - (vv; sin ; sin 6, sin ¢)2] (A2)
m
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and
_E vi(1+cos® ) E; v}(1+cos® @)
" my 1—vcos 6 my 1-—v;,cos
1 E E
- ! + S vevi(sin O sin ; cos ¢ +2 cos G cos 6;)
my\1— vfcos()f 1—uv; cos §;
2( L 1 ) 1 (E¢v; cos 0;— E,v; cos 0,) (A3)
- — (Eg, v ;
1—v; cos 0, 1—v,cos6 o e
and finally
2 E;
C= os 0¢)% + -3 ; cos 0,)°
" (1—2; cos ;) (1—1; cos 0) [E, (2 cos 6"+ 5 (vy cos 6,)
7
-2 in 6, 0;,cos p— —
ve0; sin 6 sin ¢ EiE]
EE, ve sin 6, \? v; sin 8; \?
- =2a- 0,) (1 —v; I —L— —
mg (1= cos ) (1=, cos 6,) [(1 —vg cos 6; 1 —v; cos 0,

vy, sin 6, sin 6; cos ¢ ]
(1—wv; cos 6;) (1—v; cos 8,)

E.~E E—E, 1
+2 -"q—z— —4( 4 3 ) —4 (E¢v; cos 0~ E,v; cos 0). (A9
my my my my

Note that in the formula (Al) there are no infrared divergences in contrast to the cor-
responding Bethe-Heitler formula.
In the nonrelativistic approximation, Eqs. (A2)-(A4) give

A =B = C = (v,sin )" +(v, sin 8)* —2v,v, sin 0, sin , cos ¢. (A5)
Then, Eq. (Al) reduces to the form

dé yNa wv,
dwd cos 8,d cos 0,dd NR 27 4v (4 )

— V(@) + Sx(@)124. (A6)
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