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We formulate the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of
kinetic equations for quark-less QCD plasma. Assuming Bose-Einstein distribution for the
equilibrium distribution of hot gluons and ghosts, we solve those kinetic equations in the
mean-field limit and obtain the dispersion relation in the order g2. Contiary to this above
assumption, the state of noninteracting gluons is unstable, i.e. the damping constant of the
colour oscillations is negative. We argue that the non-perturbative effects at the scale ~g7
make the perturbative approximation.to the equilibrium distribution of hot gluons
inconsistent with the kinetic equations already at the lowest, non-trivial order g2.

PACS numbers: 12.38.Mh, 13.90.+1

The thermal properties of gluons have recently been the subject of much controversy.
Applying the techniques from the Abelian theories to the non-Abelian case of quantum
chromodynamics (QCD), a serious disagreement presently exists concerning the damping
of colour oscillations in a quark-gluon plasma. Kajantie et al. have studied the one-loop
gluon propagator in the Coulomb gauge and in the temporal axial gauge to derive a positive
damping constant [1] y. In the covariant Lorentz gauge, on the contrary, the same technique
yields negative [2] y. The plasmon decay rate has also been calculated using the background
covariant gauges [2-3]. Again, y is negative and explicitly gauge parameter dependent.
This shows that there is at present a severe problem in our understanding of the nature
of the plasmon within finite-temperature QCD.

In this letter we do not address the problem of the gauge-dependence [4] of y or the
problem of a correct physical definition [3] of y. Instead, our aim here is to formulate the
relativistic kinetic theory on a quantum field theoretical basis by developing the Bogoliu-
bov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and truncating it at the mean-
-field level. This field is largely unexplored in spite of large interest in developing the kinetic
equations of quarks and gluons. (For a recent review of the subject see Ref. [6] and refer-
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ences quoted therein.) In addition, we solve those kinetic equations around a postulated
equilibrium and derive the dispersion relations in the limit o > [k|.

Let us consider a QCD Lagrangian in a covariant gauge for a system of non-Abelian,
self-interacting gluonic fields 44 (0 =0, ...,3, a=1, ..., N2—1) coupled to the ghost
fields c,, c}. The QCD equations for the fields 4 and c can be replaced by an infinite hier-
archy of coupled kinetic equations (the BBGKY hierarchy) for the statistical averages
of products of the field operators. Obviously, in order to obtain a meaningful theory ene
has to propose a truncation scheme. Below, we show the lowest order BBGKY equations
for {(4) in the Feynman gauge (x = 1):
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and the two ghost fields:
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If we neglect the correlation functions of three and more gluon fields and, in addition,
if we apply the Vlasov approximation to the statistical averages containing fields A and ¢:
{cted) = (Actc) = {ctc) (4), then we obtain three equations for the three unknown
functions: {(4), (44), {cc). One should notice that those equations do not result from
a perturbative expansion in powers of g.

In equilibrium <(4) = 0 and (AX)A(»)) = L(x—y), {c(x)c(y)) = €(x—y) depend
on the relative coordinates. Then Egs. (1) and (3) are satisfied identically and Eq. (2)
reduces to the on-mass shell condition for hot gluons in the mean-field limit:
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Let us now suppose that the system has reached equilibrium. In this case, if one would

know the equilibrium distribution functions &f and €, then the above transport equations

can be used to study the properties of hot gluons near equilibrium. Let 54 be a perturba-

tion of the field 4 which is induced by the coupling to some external physical system.

Assuming that the perturbation is small, we can restrict ourselves to terms linear in d4.
Using properties of & and €, one obtains:
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The functions {c'c) and 4Q on the right hand side of Eq. (5), are given by:
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where index R denotes the equilibrium distribution. We note that the zero order terms in
Q cancel as a result of Eq. (2). Hence, we have obtained a closed set of nonperturbative
integral equations which is complete providing one knows the equilibrium distribution
functions o and €. In the following, we shall approach the solution of those equations
perturbatively. _

The dispersion relation in order g2 can be calculated from Eq..(5) after inserting the
equilibrium distribution function for noninteracting gluons and ghosts:

oK) = =g (k) (nello]) +8(— ko))
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into the rhas of Egs. (6), (7) n,(k) in the above equation is the Bose-Einstein distribution

function. The details -of this calculation will be published in a separate publication [7].
Here we give only the final result:
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. The polarization tensor IT,,, in this equation, is the correction of order g2 to the zero
order dispersion relation k2 Qj(k) = 0, and satisfies the transversality condition on the mass-

-shell (k* = 0), even though expressions for IT v are not Lorentz covariant. The “vacuum”
part of IT,,:

I uv(k) = (kz Euv— kpkv)H Reg(k)’ ay

where I (k) = 3 (%K) = o — I1%(0) - o) describes the influence of the vacuum fluctuations
on the propagation of the oscillation. The “matter” part of II,, is connected with the
thermal excitations and dominates the dispersion relation at high temperatures. The tensor
II,, is transverse also at finite 7. '
 Let us now separate the polarization tensor into the longitudinal and transverse
parts:
o, = Iy (&J— ','cizj) +H‘-ki:4 . 12
-k k
This tensor has two eigenvalues, one for the longitudinal and another one for the transverse
oscillations. IT; and IT; can be calculated explicitly by integrating I7 (k) on I, and angles

and keeping only the terms containing the distribution n,{J). Unfolding then the dispersion
relations in the case when the real part of k, is much greater than its imaginary part and
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taking the limit © > k| one obtains:
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for the longitudinal oscillations and
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for the transverse oscillations. In the limit |k| — O one obtains results of the one-loop
calculation [2]:
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Hence, contrary to our earlier assumption, the state of noninteracting hot gluons (8) is not
an equilibrium one, i.e. if one slightly perturbes this state, then the field configuration will
begin to oscillate with the growing amplitude, destroying the coloured equilibrium state.

This instability can be caused by a wrong choice of the equilibrium state, ie., the
QCD plasma approaches the equilibrium in a state which differs from (8). In this context
one should notice the advantage of applying the above proposed method. We have explicitly
chosen Bose-Einstein distribution functions for gluons when constructing the dispersion
relation. However, contrary to the method of the imaginary-time finite temperature QCD
[1-3] one can easily generalize the above equations also for the case of other distributions.

Tt has been suggested that the interacting gluons, even at high temperatures, may take
exotic forms of ordered condensates of colour singlet states [8] and the basic excitations
of such a system would be colourless glueballs [9]. If this conjecture is true then the descrip-
tion of the quark-gluon plasma solely in terms of quark and gluonic excitations is inade-
quate. Consequently, also the predictions concerning properties of the colour charged
quasi-particle excitations and, in particular, the colour charged oscillations should be
changed.

Actually, the phase transitions in various regions of (k,, k)-space between different
possible regimes in the condensate remain essentially unknown. Recently, De Tar and
Polonyi [9] have suggested nonperturbative effects in the long wavelength limit, i.c. at the
scale ~ g2T, due to the existence of the composite colour-neutral objects. According to this
idea, the free distribution function at this momentum scale is modified in the nontrivial
way, even though, for larger momenta it constitutes the good perturbative approximation.
The real part of the polarization tensor is given by an integral of the distribution function
from O'to o0. Hence, in the leading order the corrections to the distribution function in the
finite non-perturbative domain “~gT” do not change the plasmon frequency . On the
contrary, the imaginary part of the polarization tensor which determines the damping
constant i$ given by an integral in the domain “~gT™ and is very sensitive to such non-
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-pertubative corrections. In that sense both the sign and the magnitude of the plasmon
decay rate remain essentially nonperturbative phenomena which cannot be calculated
perturbatively at the mean-field limit. This introduces an additional difficulty in the calcu-
lation of the plasmon decay rate on the top of the known difficulty with the gauge-depen-
dence of the response function. '

Hence, we believe that no quantitative conclusions about the sign and magnitude
of the plasmon decay rate can be made before the non-perturbative structure of the equilib-
rium distribution function is understood, i.e., before the inconsistency between the
structure of the mean-field kinetic equations and the chosen equilibrium gluon and ghost
distributions is resolved. Solving this problem would largely help in understanding puzzling
features of the collective behaviour of the quark-gluon plasma using the finite
temperature QCD.

We wish to thank B. Friman, H-Th. Elze and M. J. Rhoades-Brown for useful discus-
sions and commeénts.
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