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PHENOMENOLOGICAL ANALYSIS OF DISPERSIVE EFFECTS
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A discussion of the dispersive effects arising when scalar waves are coupled to plane
electromagnetic waves is given. Higher powers of the electromagnetic invariants are included
that may arise in strong fields and certain distinct signatures for the number of independent
frequency components that occur for particular couplings are found.
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1. Introduction

Scalar fields in physics have widespread application and have become a fashionable
representation of scalar particles ever since the Yukawa scalar meson theory [1]. In particle
physics the use of a scalar doublet to carry out the mechanism of spontaneous symmetry
breaking has prompted many theorists to search for a more fundamental origin of scalars
through, perhaps, the technicolour scenario or perhaps from supergravity theory [2, 3].
The axion is a scalar particle that results when the Peccei-Quinn symmetry is broken
at a high scale and a pseudo Goldstone boson results as a consequence of the breaking
of the global U(1) symmetry [4]. The original motivation for introducing the Peccei-Quinn
symmetry was to solve the strong CP puzzle of Q.C.D. by allowing arbitrary adjustment
of the vacuum angle (6) in the topological CP violating term. Along with the axion there
are other scalars, so-called majorons and familons that result from neutrino mass-generat-
ing mechanisms and horizontal symmetry breaking schemes involved in quark mass genera-
tion [5, 6]. To date, none of these particles have been found although they are still being
sought after in accelerator experiments. There is also the possibility that scalar partners
of the Z are present in nature and have a dynamically generated mass from an underlying
preon theory [7]. If we turn toward gravitational theory we find that scalars arise by allowing
the gravitational constant to vary to better accommodate Mach’s principle in the guise

(55)



56

of Brans-Dicke theory, scalars are also present in creation theories such as Barber’s theory
wherein the scalar field plays the role of both inverse gravitational constant and the creation
field [8, 9]. If we examine the structure of supergravity theories we find that both the dilaton
and gravi-scalar emerge as necessary components of the supergravity multiplet [10, 11].
Both of these scalars affect cosmological dynamics, and the gravi-scalar can in principlé
be detected in Edtvis type experiments because of its asymmetric interaction with matter
and anti-matter [12]. The couplings of the above fields to electromagnetism although diffi-
cult to detect in accelerator experiments may have testable consequences in electromagnetic
scalar propagation. In this regard, the axion has a coupling to electromagnetism through
quark loops [13), and in principle both the dilaton and the gravi-scalar should couple to the
electromagnetic field through supergravity couplings. Another possible coupling of electro-
magnetism to scalar fields results from Kaluza-KIl¢in theory upon compactification wherein
a scalar electromagnetic coupling is a necessary result of the consistency of the theory [14].
Lastly the presence of axial-vector torsion in gravitational theory necessitates the presence
of a scalar field that generates torsion and couples to the electromagnetic field through
the virtual fermions created by the electromagnetic field. The spin of these virtual fermions
generates the torsion electromagnetic coupling by the intervention of virtual fermion
loops [15]. In a previous note we have discussed the dispersive effects of this coupling but
did not calculate the higher order couplings that we discuss in this note [16]. In what follows
we develop a phenomenological analysis of electromagnetic scalar couplings through plane
wave propagation. We include higher powers of the electromagnetic invariants that become
important with high fields when vacuum polarization effects become relevant. We also
discuss possible signatures for certain couplings including the number of dispersive compo-
nents signaling a certain preferred coupling. With regard to gravitational theory we note,
following Gasperini, that in general these couplings violate the equivalence principle {17],
and suggest that the discovery of these dispersive effects would open up new avenues of
investigation in both gravitational theory and particle theory to ascertain the fundamental
origin of these couplings.

2. Phenomenological scalar-electromagnetic couplings and plane wave propagation

We begin our analysis of scalar-electromagnetic propagation by writing down a general
gravitational electromagnetic scalar lagrangian in the spirit of Bergmann’s original lagran-
gian [18],
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We have added the source term gq¢ to balance out the background electromagnetic
field about which we study fluctuations. We have included the pseudo-scalar couplings
f2(¢) &"FF,

nv sﬂV!pF 1ﬁ )2 f 5(¢) sadeF L‘dF ab)

to take into account the two fundamental invariants of the electromagnetic fieid. Actually
¢ in Eq. (2.1) could be either a scalar or pseudoscalar field and we have not restricted the
lagrangian to be invariant under reflections since for either choice of scalar or pseudoscalar
the lagrangian will have parity violating terms. Our analysis is purely phenomenological
and allows for the parity violating terms. In studying the propagation of scalar-electro-
magnetic waves we discus§ a wave with two states of polarization; Gasperini has shown
how two states of polarization are necessary to understand the rotation of the plane of
polarization of electromagnetic waves by a scalar field [19]. The most general plane wave
moving in the x direction is specified by the following field configuration

(FFF ) (

F12 = Bz, F24 = E’, F13 = "’Bo-‘By, F34 = Ez. (2.2)

Here B, = background magnetic field in the y direction.
Varying equation (2.1) with respect to ¢ gives
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Varying equation (2.1) with respect to 4, gives
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We also have the condition on the potential
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For the electromagnetic invariants we have
F4F* = 2B?—2E? = 2[ B2 +(Bo+B,)*] - 2(B? + E2)
= 2B2+2B2+4B,B, +2B%—2E2— 2E2, (2.6)
31"’%@_» = —8B-E = —8E,B,—8E(B,+B,). @7

We keep only terms linear in the fluctuating fields and neglect quadratic terms such
as BZ, EZ ...
Thus, to first order

F4F* = 2B} +4B,B,
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We now choose the scalar coupling to be linear in the scalar fields and given by

[1@) = 8¢, fo(d) = 20, f3($) = e3¢,  fu(d) = esd,  [s(P) = &sp.  (2.9)

er 1/2’
In conventional C.G.S. units, the scalar field has dimensions (__g) , the couplings
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the calculation of the dispersion in the frequencies of plane electromagnetic scalar waves
we comment briefly on the possible origin of these couplings as generated by a symmetry
breaKing mechanism at the electroweak and Planck scales. For the present, however, we
just treat them as phenomenological constants.

When we insert the fields from Eq. (2.2) and the scalar coupling from Eq. (2.9) in the
field Eq. (2.3) and Eq. (2.4) we have
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The condition on the source g, follows from the unperturbed fields in Eq. (2.10).

3133
2

— 00— —eB3 = 0. (2.13)

We now use the condition in Eq. (2.5) or equivalently
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to simplify Eq. (2.11) and Eq. (2.12) after differentiating Eq. (2.11) with respect to ¢ and
Eq. (2.12) with respect to X. This gives in combination with Eq. (2.10) after extracting
the source condition and leaving the fluctuating fields.
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Substituting the plane wave solutions in Eqs (2.14), (2.15) and (2.16)
¢ = 56 ei(kx—cn),
B, = Bye'®™™~, Q.17

ikx— ot
E’=Eoe(x w),

- [o? - -
do (—C-é- —k2> +By(— Bogy —4Bje;) + Eo(2Boe, + 4¢5B5) = 0, (2.18)
2 wz
Po(8ne, By +16me5B3) — - +0+E, (?:7 —kz) =0, (2.19)
wz
{50(—4%8130—167‘{3383)1624-1—30 (‘Ez— —kz) +0 = 0, (2.20)

we define
A = Boe,+2B3ss, B = ¢,By+e5(4B3),

and insisting that the determinant of the coefficients vanish in order to ensure a solution
for ¢o, E,, B, we have
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Equation (2.21) fadtors to give

w? o*  20%k? 16nA2W?
(“c? -_k’) [— =t —k*+ — +47zB2k2:| =0, (2.22)
the solution for w? are
w? = C*k* (2.23)

which is the normal branch, and
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or

0? = K2C*+8nA2C? +V1614%K2C* + 64n4*C* + 4n B’k C* (2.24)
for the shifted dispersion relations due to the scalar electromagnetic coupling.
We now study three cases for the above shifted dispersion formula in Eq. (2.24).

Casel:If B = &,B,+£5(4B3) = 0 (&, &3 = 0), and 16n42k>C* > 64n24*C*, where A = Bz,
+2e5B3, giving k? > 4nA?, or,

1/2
T > 82B0 if 85 = 0 (2.25)
and
7‘[1/2
ik esB) if ¢, = 0. (2.26)
Under these conditions Eq. (2.24) gives -
w? = K*C*+kC?4r'/%4, 2.27)
with
Aw®)  4n'’(e,Bo)
o = . for & =0 (2.28)
and
Aw?)  4n'’*(2e5BY)
= f = u .
pes P or & =0 (2.29)
Here w} = k>C2. For a field of B, = 10* gauss and a shift of 19 in w? we have
A@?)  4n'(s,B,) 107° /7’2
= = 10'2’ = e e = U, 2.3
e X or € 7 (2)1'01' s =0 (2.30)
A(w?)  4n'l? - 107 g2
prala (2esB3) = 1072, &5 = BTN for &, = 0. .31
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We see in both these cases that the above limits in Egs (2.25) and (2.26) are satisfied

to justify the approximation.
Case II: For 4 =0, (¢;3,65 = 0) and

®® = k2C?+2(m)!*kC?B,

(2.32)

where B = &,B,+4Bj¢; if B, = 10* gauss and if we look for a dispersion of 1% we have
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10—14 1/2
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Case III: For B = 0 (¢,, &3 = 0) and high fields;
1/2

64n24%C* > 167k*4%C* or if. Bos, > %—if 85 =0,

and

/2
85B(3)>-—2'A—if62=0
we have from Eq. (2.24):

w? = k*C?+16n4%C?,

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

thus we only get one shifted frequency branch which gives a total of two branches including

the normal branch in Eq. (2.23). We estimate the shift in w? as follows

Aw?) 16nC*(e,By)* 4 , ,
= =2 = — 2Bt > 1
3 K*c? e

Aw®) 16nC*(2esB3)? 16 .
p: = e = —;a%Bglz >1if g =0.



62

The fact that both of these ratios are greater than 1 follows from Eq. (2.35) for the condi-
tion on the values of B,, 4, &, and By, 4, ¢5. We thus see that high fields with the absence
of the couplings &, £; generate a single dispersive branch in addition to the normal case,
(2.23). Both Case I and Case II generate three branches including the normal branch.

3. Conclusion

We see from the above analysis that a signéture for the couplings of &, or &5 for high
fields would be two dispersive branches including the normal branch, with a large disper-

. A(w? . .
sion in (w?) of ¢ 5 ) > 1. The other two cases would produce three dispersive branches
wy .

and have the calculated couplings for a deviation of 19, away from the normal branch.
In a previous note, we discussed just the couplings ¢,, €, and did not consider the additional
invariants discussed in this paper. If we inquire into the origin of these couplings, we may
with certain assumptions regarding their dependence on the fundamental constants b, G
and C, speculate on their possible generic origin from a symmetry breaking-mechanism
at the Planck scale and the electroweak scale possibly rooted in supergravity theory. Suppose
we study the microwave region with 4 & 1 cm, then from Case I and II above, with a 1%

shift in w? we have &, £, ~ 10~ and dimensionly ¢,, &, have units (cm/erg)!/?. Thus in
1/2

terms of h, G, C we may write (K, = dimensionless constant) 10-6 = (-5—) K, giving

c

K, ~ 108, which is approximately the ratio of the Planck breaking scale to the electroweak
scale. For &,, 5 we have assuming a 19 shift in ©? from Case I and Case II above, &3, &5
=~ 10-'* for microwaves of 1~ 1 cm. ‘

The dimensions of &3, €5 are (cm’/?/erg®/?) which gives in terms of the three fundamen-

- _ (hG*?
tal constants A, G, C—and the dimensionless constant K, &5, &5~ 1074~ K ( 5
c

8
which gives K ~ 10126 = <__¢_€L) .
PEW

Thus the constants &; and &5 would emerge from a symmetry breaking mechanism
that leaves a phenomenological coupling constant proportional to the ratio of the Planck
scale and the electroweak scale to the eighth power. Though the above numbers are all
dependent on a 1 % shift in a 10* gauss external field, if these dispersive effects are discovered
it would be interesting to see if there is a correlation in the coupling constants &,, €,, &3, &5
with respect to the ratio of the Planck scale to the electroweak scale. If there were, it would
certainly suggest that these couplings have an origin based on supergravity or superstring
theory with a symmetry breaking mechanism leaving the phenomenological couplings that
depend on the Planck scale and the electroweak scale in the above manner. The last point
to be made is that these dispersive shifts would have to be separated out from other spectral
shifts such as cosmological shifts, Doppler shifts due to local galactic motion and gravita-
tional shifts due to inhomogenities in the universe. Spectral splittings due to possible atomic
transitions would also have to be eliminated as possible competitive effects. In closing we
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hope that this investigation will encourage a closer look at the microwave spectrum as well

as other regions of the spectrum to ascertain the presence of scalar electromagnetic
couplings.
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