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The relations between the Newton-Cartan theory, Newton’s classical gravitational
theory and General Relativity are discussed. It is shown that the limit ¢ — 0 of General
‘Relativity becomes identical with the Newton-Cartan theory, provided the so-called time
function — defined as proportional to the singular part of the covariant Einsteinian metric
in the transition ¢ —» co — satisfies a certain boundary condition at spatial infinity. Using
this limiting process, one obtains an asymptotic representation of Einsteinian fields “near”
the Newtonian limit. This should allow us to identify post-Newtonian corrections for the
Newton-Cartan theory. ’

PACS numbers: 04.20.Cv

1. Introduction

Newton’s gravitational theory governs the motions in the Solar system, post-Newto-
nian corrections are very small here. The theory has been applied also to larger systems,
even to the whole Universe, establishing a Newtonian cosmology similar to Einstein’s
[1-5]). The question, to what extent we can trust Newtons’s theory also in a cosmological
context, — considering Einstein’s as the correct ope — is still open however [4-8]. A direct
comparison between Newton’s and Einstein’s gravitational theories is difficult since the
mathematical and physical framework of both theories is so different. Fortunately, there
exists a space-time formulation of Newton’s theory, dating back to Cartan [9] and Fried-
richs [10], which has much similarity with the space-time formulation of Einstein’s theory
(see Ehlers [11] for a general review). Moreover, the Newton-Cartan theory can be obtain-
ed as that limiting case of Einstein’s theory where Einstein’s light cones open up to become
the hypersurfaces of equal Newtonian time [10, 12]. For some Einsteinian fields an asymp-
totic representation becomes possible, where the lowest order terms just give the New-
ton-Cartan fields. We conjecture that a study of higher-order terms will help to clarify
the relation between Newton’s and Einstein’s cosmology. The present article is a first
contribution towards an answer to these questions. In Section 2 and 3 a short exposition
of the Newton-Cartan theory is given, including some aspects of its physical interpreta-
tion. In Section 4 the trapsition from General Relativity to Newton-Cartan structures is
considered. ’
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2. Newton-Cartan theory

On a four-dimensiopal differentiable manifold ¥ two geometrical objects are intro-
duced, a degenerate semidefinite contravariant tensor field 2 of rank 3, und a symmetric
affine connection I',;*. From the degeneracy of h* follows the existence of a covariant
vector field ¢, with

h*ty = 0. 6))

K and t, are assumed to be covariantly constant with respect to the affine conpection
r K.
af

B, =0, t4,=0. #))

From (2) and the symmetry of the connection follows that ¢, is the gradient of a scalar
field t(x") on ¥, called absolute Newtonian time”, ¢, = #,,. The conditions (1), (2) do not
fix the connectlon in terms of the fields 4%, t,, some parts of 1“,,," serve as additional
field components: With I’ «s all connections generated by

T = L+ W Koty &)

also satisfy (1), (2), if K, is antisymmetric. This class of connections was called *’Galilean”
by Kiinzle [13]. Newton’s theory corresponds to a restricted class of connections. The
restrictions are formulated as conditions for the Riemann tensor formed with the connec-
tion, first given by Trautman [15]

PRI . = 0. )
(Eq. (4) is only apparently weaker then condition IV in [15]. If [1, 2] are taken into account,
both are equivalent. Note also; throughout this paper we follow the sign conventions of
Misner, Thorne and Wheeler [14].) Galilean connections satisfying (4) were called “New-
tonian” by Kiinzle [13]. As shown in Sectlon 4, Newtonian conpections are just those
following from the limiting process ¢ — o0 of General Relativity. Even then the resulting
geometrical framework is more general than necessary for a spacetime formulation of
Newton’s theory. This generality can be removed, if also field equations are considered.
But in this case boundary conditions at spatial infinity must be introduced, and this confines
the theory to finite (localized) Newtonian matter distributions. Alternatively, one might
restrict the geometry by a further local condition on the Riemann tensor, for instance
[16]

'h"”R',,,, =0 (5)
This condition does not follow from the ¢ » o© hmlt of General Relativity. We therefore
drop (5) subsequently.

Field equations relate — as in General Relatmty—-—geometncal quantities 4%, t,
T'g* to the matter. distribution. A simple perfect fluid model with matter density o will
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be assumed. The almost unique [16] choice of a field equation is similar to General Rela-
tivity:

Rap = 4ﬂGQtatp, (6)

where R, is the Ricci tensor formed from the curvature tensor R%,,. (6) reflects the fact,
that only the matter density acts on the geometry directly, specific values of the momen-
tum and stress of cosmic matter have no influence in Newtonian approximation. Let
v* = dx%dt with v*t, = 1 be the Newtonian four velocity of a perfect fluid with pressure p,
we have to postulate the equations of motion and conservation of mass independently
of the field equations:

o’ = —h¥p,, @)
v°0,s+ 0%, = 0. ®

Furthermore, one postulates that test particles follow a geodesic to I',z*:
d*x*|dt* + T ,*dx"(dtdxP|dt = 0. ©))

The equations of this Section — except of (5) — are the basic equations of the Newton
-Cartan theory for a simple fluid.

3. Physical content of the Newton-Cartan theory

To study the physical content of the Newton-Cartan theory, it is useful to introduce
adapted coordinates defined by the condition that x° equals Newton’s time ¢. In these
coordinates, t, = t,, = 6°, and from (1), A% = k% = 0 (i = 1, 2, 3). The adopted coordi-
nate system is fixed up to transformations

t' = t+const, x = fX, 1), (10

where f* are three arbitrary functions with det f*, # 0. In adapted coordinates the rela-
tions (2) are equivalent to

Fapo = 0, Fooi = hik¢k, I-kai = huilkl/2+huwkl’
iy kli = {kli} ’ (1)

(a dot denotes the time derivative). 4, is the inverse matrix to h¥, {,'} are the Christoffel
symbols calculated with A4, as 3-metric of the hypersurfaces t = const. The quantities
@, and oy = —wy, are fields remaining undetermined, i.e., they are not fixed by the
fields #*, t,. Since @, and wy, are patts of a connection, they do not simply transform as
3-tensors. We refer to @, as acceleration force field and to w,; as Coriolis force field. Inci-

dentally we note that the transformation (3) of the affine connection corresponds to the
SubStltutiOIl Qk ind ¢k_K0k’ a)k, g (J)k,—Kkl/Z.
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The Trautman restriction (4) for the Riemann tensor can now be written

D= Dy = — 20y, (12)
08" =0, 13

and the field equations (6) split into
Ry(hw) = 0, (14)
B gy — by i) — B0 = 0, (15)
R+ 0@ —hyh®2— b h¥|4 = 4nGo. (16)

Here || denotes the covariant derivative with respect to {;,}. Since in three dimensions
a vanishing Rieci tensor implies that the Riemanu tensor is also zero, (14) states that the
inner metric of the hypersurfaces of equal Newtonian time is flat. By means of the trans-
formations (10) one can introduce a special class of adapted coordinates, so-called Gali-
lean coordinates X', ¢, by the condition k;, = 3. Galilean coordinates are preserved under
transformations of the kinematical group

t' = t+const, 17
x" = a*()x* +d'(t) : (18)

with a*a" = J,; (summation convention), corresponding to the transition to other arbi-
trarily accelerated and rotated Cartesian coordinate systems.

In Galilean coordinates, (15) becomes #w;,, = 0, which admits a representation
wy = &ufy. From (13), £, = 0, f being a harmonic function. This allows to exclude
the Coriolis field, if we assume w; — const (the constant may depend on ¢) at spatial
infinity: w, — const implies f — f'x;+f,, and the function f = f—fx'—f, tends to zero
at spatial infinity. Since f = 0 is a solution, the uniqueness theorem implies f = X +1,
or wy = wy (¢). A saptially constant Coriolis field allows to introduce a special class of
Galilean coordinates (’nonrotating” coordinates) by means of the kinematical group
(17), (18) such that the Coriolis force field vanishes for all time in the new coordinates.
Indeed, w, transforms as

), = a"d*o, +a"a" (19)

(19) represents for wj = O ordinary differential equations for the three independent
components of a; (e.g. the Eulerian angles). w, = 0 is preserved under 1estricted kine-
matical transformations with a rotation matrix independent of z. However, there might
be reasons not to impose boundary conditions. It is still an open question whether cosmo-
logical solutions require a nontrivial Coriolis field.

Because of (12), the acceleration force field derives from a potential @, = ¢, only
if @y = 0. The remaining equation (16) then . s1mp]1ﬁes to the Poisson equation for ¢.

AP = 4nGo, 20)
only if w, = 0.
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For comparison with the ¢ — oo limit of General Relativity it is useful to define
a covariant metric field 4,; besides the contravariant field 4*. Since 4* is degenerate, &,
cannot be defined uniquely. Let a contravariant vector field »* with »*z, = 1 (i.e. a ’time-
-like” or null” unit vector) and a scalar H be given additionally. Then the relations

hogh®*+1,n* = 8%, (1)
hogn'n® = H (22)

uniquely determine a symmetric covariant tensor field A,;. Multiplying (21) with »°% it
also follows

hygn® = —Hit,. (23)
Indeed, in adapted coordinates
hah® = 8), o = —hgn®, Moo = —H+hyn'n*, 24)

SO h,p is determined by n* and H. Usually, H is taken as zero [16, 17] and the vector ficld
n* is chosen such that [17]

n®n’ =0, (25a)

h”n"lp—h"ﬂn"w = 0. (25b)

Here we proceed slightly differently. We try to define #,; entirely in terms of the affine
connection. In adapted coordinates we may introduce four functions ¢ (related to a New-

tonian potential) and h,, (related to a vector potential), depending on all coordinates,
by the differential equations

h0k+¢’k =@,  ho—how = 20y (26_)
The integrability conditions for (26) are just (12) and (13). We may then consider the quan-

tities
-20 hOk)
by = 27
< hox @7

as components of a covariant 4-tensor in adapted coordinates. Taking into account the
proper transformation laws of @, and w,, as parts of a connection, it can be checked that
(27) indeed transforms as covariant tensor under (10). Defining a contravariant vector
field #* by means of

°=1, = —h"*n, - (28)

it is easily seen that (21)+(24) are satisfied for ¢* = »n*. This also holds for (25b), but in
general not for (25a), since (252) requires H,; = 0 in adapted coordinates. (25a) is in
line with the assumption H = 0 made in [17], but not with our assumptions. The affine
connection can now be written in general coordinates as

I :ﬂ = t”t(a,[l) + hm(haa’ﬂ + haﬂ’a - haﬂ’o‘)/ 2. (29)
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Notice that 4,, is in general not constant covariantly, for instance
hogiut” = (H,otg+ Hogt,)/2. (30)

We further emphasize that t* and A, are not uniquely determined by I, 7, and A*.
It is seen from (26), that & and A, are fixed only up to the gauge

5 = @—F,o, Eok = hOk+F’k’ (3])

with an arbitrary function F(x', t). hy, is gauge-invariant, but ¢' (see (28)) changes under
a gauge. In general coordinates, A, t* and H transform as

Eaﬁ = haﬂ'l'F,atp +F9pt¢s (32)
* = *—hF,,, (33)
H = H+2f,*—h*F,F,;. (4

The transformed quantities also satisfy all relations (21)-(24), (27)~(30). The affine con-
nection is gauge-invariant. The gauge transformations (31) can be traced back to higher-
-order coordinate transformations in the ¢ — oo expansion of General Relativity (Sec-
tion 4).

Sometimes the connection (29) is divided into components said to describe “inertial”
and “gravitational” forces:

[ =T+t th" "y, (35)

where y is a suitable scalar function. (35) is a particular case of (3) with K5 = v,51,— 9,,1;,
hence, if I',;* is a Galilean connection, so also 1"’”“, the only change is that the gradient
part of &, is different. The division (35) is clearly not unique if y is identified with the
potential @, since it can be changed by the gauge (31). Instead, one may define y by divid-
ing the gauge-independent quantitiy &, into a rotation-free part y,, and a divergence-frec
part @, @, = p, +P,. Although this splitting is gauge-invariant, it lacks in general
physical meotivation, ‘since f‘,,,“ still contains gravitational forces such as the Coriolis
field, if the Riemann tensor calculated with I",,* does not vanish. It is to some degree
a matter of tast whether the Coriolis field should be considered as “gravitational” or as
“inertial” force (see also [18]). Although the field is sourceless, it cannot be transformed
away globally if wy,); is nonzero. It would be better to speak of a gravitational force
of purely geometrical origin. Only if the Coriolis field is completely rejected, the Riemann
tensor to I‘"a,,“ vanishes, and the separation (35) makes sense physically (cf. Ehlers [11]).

To summarize, the physical content of the Newton-Cartan theory as defined in Sec-
tion 2 appears to be slightly larger then that of Newton’s classical theory. If a boundary
condition at spatial infinity is imposed for the Coriolis force field, both theories coin-
cide.
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4. Newton-Cartan theory as degenerate case of General Relativity

We now turn to General Relativity and show, extending and improving an earlier
derivation [12], that a certain degeneration of this theory leads asymptotically to the re-
lations obtained in the previous Sections. Let g** (x*, ¢) be a family of contravariant met-
rics, depending smoothly on a parameter &, and with a signature (— + + +) for every
e # 0. We further assume that g* satisfies the Einstein field equations for all ¢ > 0 and
tends to a degenerate tensor A% of rank 3, signature (0+ + +) for & —» 0. 1/ will later
be taken as the square of the velocity of light, or ¢ = 1/c%. A macroscopic matter tensor
will be assumed, such that

K(Top—8asT/2) = Tpp (36)
tends to a finite limit T:“, for ¢ =+ 0 (note k = 8nGe). We shall show below that this limit-
0

ing behaviour of the matter tensor is compatible with a reasonable Newtonian limit for
a perfect fluid. We finally assume that for small ¢ an asymptotic representation

g7(x", &) = h(x") +eg™(x")+O(") , @7
i
should be possible. Then the covariant metric admits a corresponding representation
£ €) = Zop(X)E+ heg(x") + 28, (x*)+O(E), (38)
-1 1

with a singular term g,;. The relations between co- and contravariant components give to

lowest orders

h* gl,,,, =0, 39
%aﬁ —glﬂu-'-haﬂhpu = 5:‘ (40)
From (39) it is seen that g,; can be written
-1

gap = —txlﬂ" (41)

-1

With the minus sign g,, has the correct signature. #, an eigen vector (to the eigenvalue
zero) of h*:

h"‘"t,, = 0. (42)
We also have

—g%tt, =1 (43)
1 .

from (40)~(42).
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The Christoffel symbols admit a representation which follows from (37), (38). A short
calculation gives

I =3¢l laﬂu + {aﬂ" + 8{«5" +0(), (44)
where

I " = Wty mts + o pitds (45)
_1 .

F..zpu = h‘w(haa’ﬁ + haﬁ’a - haﬂw)/2 + tut(a,ﬂ)
0

- gl‘“’(t,t[,,,, +1pt15,07)- (46)

We have used the abbreviations
= —g%t,, 47
1

note %, = 1 from (43).

The behaviour of the terms in the expansion (37), (38) under coordinate transforma-
tions is easy to derive. Similar to the metric we expand the transformation functions in
powers of &:

% = X(x")+ E(xMe+ ((x*)e 4+ O(2®). (48)
(1]
All expansion terms in (37), (38) and the singular components of the Christoffel symbols

(45) transform as tensors under zero-order transformations X* = X*(x*), (46) transforms
(4]

as affine connection. For the gauges

7 o= x"+E(x")e (49)

we have
B — haﬂ’ quﬂ - %ﬂﬂ'!'hupfai”-l-h"’fﬂ“,, (50)
Io=ty ke = hygtta(t,£)).+ (4.8 (51)

where | denotes the covariant derivative with respect to the affine connection (46). With
F = t,£%, (51) becomes (32). Thus the gauge transformation in the Newton-Cartan theory
results from a higher-order coordinate transformation in the ¢ — oo limit of General Re-
lativity.

The expansion of the Ricci tensor in powers of ¢ contains in general two singular
terms

Ry = e 2R g+& 'R 5+ R,5+0(e). (52)
-2 -1 0
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Since T:,, tends to a finite limit as ¢ — oo, the singular terms in (52) must vanish:

£m=Q (53)
5w=0 (54)

(53) reduces to the simple relation
taafrpsanh ™ B’ = 0. (55)

In a local adapted coordinate system #, = dy,, which can be introduced at any point of
the manifold, it can be shown that (55) is algebraically equivalent to

Hoptut tipsuitat twats = 0 (56)
(note that 4™ is a positive-definite metiic). (56) shows that ¢, can be written
t, = ht,, (57
where ¢ and A are two scalar functions. The field equation (54) reads
{ﬂﬁu=0’ - (38)
or with (45) and (57)
(h*hipt,ty/R))e = O. (59)
A straightforward calculation yields
tas = —tg(h—1t.h, 1*)/h, (60)
B, = hot (Ch*°+ CH)h, (61)
and (59) becomes a differential equation for the function A:
hh,yp = 0. (62)

At first look (62) seems to be nonlinear, since & enters the affine connection (46). Actually
however, (62) is linear in h: Using adapted coordinates with x° = ¢, the expression

F,,;"hap = h"”h'p(h,a,,p+hapm— hapso)]2
o

vanishes for ¢ = 0 and gives {;/}4"* for ¢ = 1, hence (62) is a Laplace equation in the
space of the definite three-dimensional Riemannian metric f,

hikh,t”k =0 (63)

(notation as in Section 3). The dominant term of an expansion of the interval ds® = g, sdx*dx"
is ds? = —(cdt)*h?, thus the proper time between two events separated by a Newtonian
time interval dt is hdt, not dr. It is therefore justified to call 4 the time function. In the
Newton-Cartan theory discussed in Sections 2 and 3 the time function is trivial, A = 1.
This also follows from the differential equation (63) for 4, if one imposes the boundary
condition that % tends to a constant at the spatial infinity of every hypersurface ¢ = const,
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and invokes the uniqueness theorem. Then & = A(r) everywhere. In a cosmological con-
text more general solutions for # might exist. In our case, one introduces [h(f)ds as a new
Newtonian time, subsequently also denoted by ¢ This is equivalent to put 2 = 1 in all
previous equations. In particular, (60), (61) now become the basic relations (2) of the
Newton-Cartan theory. The singular part (45) of the connection vanishes, and the expan-
sion of the Ricci tensor starts with the regular term ’f,“ﬂ formed with the connection (46),

which attends the form (29). Also the Trautman condition (4) follows (but not the Dixon
condition (5)): (4) holds already in General Relativity with #* replaced by g*. An expan-
sion for the Riemann tensor similar to (44), but with regular terms only, gives (4) immedi-
ately. To discuss the further field equations in the expansion (44), a model for the matter
tensor must be selected. We assume a simple perfect fluid

T,s = 8nGe(o+&p)uu;+8nGe’pg,p. (64)
The four velocity #* is connected with the Newtonian velocify v* = dx°/dt by the relation
u® = vdt/ds, (65)

and the expansion of the relativistic interval ds yields
dsjdt = (1—eh,zv"’[2+ O(e*))/ Je. (66)

This allows to calculate T, as defined by (36) as 4nGot,t,. Thus also (6) follows from the
general-relativistic field equations. Similarly, an expansion of T%;; = 0 yields (7), (8).
We have thus obtained the Newton-Cartan theory in the version given in Sections 2 and 3.

Let us shortly summarize the assumptions (for more exact definitions of the limiting
procedure see [11, 19]). We consider a family of contravariant metric tensors g* labeled
by a parameter &, g* satisfies the Einstein field equations for all e. For ¢ — 0, g*# is assum-
ed to tend to a singular metric 2" of rank 3, signature (0+ + +), and T as given by
(36) should have a finite limit. For small ¢, an asymptotic representation (37), (38) for
the metric should be possible. Then the existence of a preferred set of spacelike hypersur-
faces, called the hypersurfaces of equal Newtonian time, can be established, and one
obtains a slighly extended version of the Newton-Cartan theory as degenerate limit ¢ — 0
of General Relativity. To obtain the original Newton-Cartan theory, a further condition
must be assumed. Define a time function A(x") as relating the relativistic interval ds to the
Newtonian dt by #(x*) = ds/dt in the limit ¢ — 0. For 4 an elliptic partial differential
equation holds. A boundary condition that 4 should tend to a constant at spatial infinity
of the Newtonian hypersyrfaces is sufficient to reduce the extended version to the usual
Newton-Cartan theory.

5. Concluding remark

The method of the last Section may be used to derive higher-order corrections to the
Newton-Cartan theory. The Newtonian approximation is given by the components of .haﬂ,
post-Newtonian term are contained in g,,. The situation is different for the contravariant

1
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components of the metric tensor. Here the Newtonian approximation is distributed over

parts of g*, g, g*. Let us denote the space components of a covariant symmetric tensor
o 1 2

G,p by s5G, by 571G the space-time components and by G the time component of G,,.
In adapted coordinates, G = Gy, stG = Gy, 171G = Goo. For the contravariant tensor
the notation is G TG, T'G. Then the Newtonian approximation is given by %g, 5'g
o 1
and ™g. In general, for all i > 2:

2

Tg=1r8, Tg=5r g, g = g8
i i-2 i i-1 i i
It is therefore not appropriate to use the four-dimensional representation of the Newton-
-Cartan theory also for its post-Newtonian corrections. A 3+1 split of the field equations
is more appropriate. Post-Newtonian corrections to the Newton-Cartan theory will be
discussed in a subsequent paper.
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