Vol. B21 (1990) ACTA PHYSICA POLONICA No 10

BIRKHOFF’S THEOREM IN THE GENERALIZED
FIELD THEORY

By A. H. Krotz
Department of Applied Mathematics, University of Sydney, NSW 2006, Australia
' (Received January 31, 1990)
It is shown that, contrary to previous expectations, Birkhoff’s theorem is valid in

the Generalized Field Theory.
PACS numbers: 04.50.+h

1. Introduction

It has been suggested several years ago (Ref. [1]) that there may exist genuinely time-
-dependent, spherically symmetric solutions of the system of field equations usuailly re-
ferred to (e.g., Ref. [2]) as the nonsymmetric Generalized Field Theory (GFT in the se-
quel). In an attempt to discover a solution of this type, it will be shown now that this result
was wrong and, therefore, that Birkhoff’s theorem holds rigorously. It seems that the reason
for the previous mistake was insufficient attention apid to the so-called metric hypothesis
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essential to the theory since it determines the metric a,, of the background Riemannian
manifold — the space-time in which we actually live. It is now known (Ref. [2]) that,
as long as very weak topological conditions are satisfied and which express the way in
which we view the macrophysical continuum, the latter must be hyperbolic Riemannian.
Hence, in the time-dependent, spherically symmetric case, its metric is of the form

ds? = c2dt?+2h dt dr— a?dr? — b*(d0? + sin*0dg?),

where a, b, c and h are functions of ¢ and r only. However, if we now introduce a transfor-
mation of coordinates

t=1(t,r), 0=r 2
such that
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and this normal (Ref. [3]) partial differential equation is, in general, soluble (i.e., the trans-
formation (2) exists), the cross term drdg cancels out and we can put

=b
as well. Therefore, we can assume the background metric to have the much simpler form
ds? = c*(t, r)dt*—a*(t, r)dr* —r*(d6? +sin?0 d¢?). 4

The corresponding Christoffel brackets are
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where ¢, = E ¢y = Fr etc., as in General Relativity.

2. The affine connection

The nonsymmetric affine connection fj, (to distinguish it from the “physical” con-
nection I'4,) for which

f“ = ffm,] =0 (6)

(we use square brackets about the indices to denote the skew symmetric, and round ones,
the symmetric part of an indexed quantity), is given by the equation

guv,)._fz,lgav-f:vgya = 0. (7)
Its symmetric part is, by the metric hypothesis, given by the equations (5). Let us write
g = huv+kuv = hvp—kvu (8)

and
hoo =79 hor =0, hyy=—a hyy=hs; cosec? § = -B,

koy = —v, ks = usinf )

where «, B, 7, n, u and v are functions of ¢ and r only. This is the most general form of
the time-dependent, spherically symmetric field
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which is also independent of the expression (4) chosen for the metric
Qe

It is now easy to show that the only significant ones of Eq. (7) are
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We immediately see that either I3, = 0 or v = 0 but more about this in a moment.
We also have

2
uug+ppo =0, . uu,+pp; = "7 u?+p%),
whence ,
u2+ﬂ2 — k2r4,‘ ‘ (11)

k? being a constant. Since equation (7) (together with the metric hypothesis (1)) implies
that

det (g,) o det (a,,)

we can write, without loss of generality.

K ay+n*—v*) = c*a’. (12)
If now v # 0 (so that Ffy;; = 0) then we have (since I3 = —Ifoy; sin®6)
f?92} = /—;%'12 cosecf = — a—';% cosec 0.
whence
n=0 (Fon =0=f[203]—’“o=?ﬁo =0),
so that

x
aao(‘é‘i—?> = 0.

If a is independent of ¢ (g, = 0) then so is « and it is easily shown that ¢ is, in this
case, at most a product of a function of r and a function of ¢ only. Then, however, a simple
transformation on ¢ alone eliminates the time dependence as in General Relativity. Hence
Birkhoff’s theorem follows without any further investigation of the field equations.

If, on the other hand,

« 7
a? ¢?
then
Floy = Floy = [y = 0 13)

and therefore
v=0. ‘ (19
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In other words, if a time-dependent solution exists, it is necessary to assume (13), when

k*(ay+7%) = a*c?, 15
and equations (13) hold again.
Let us now put
y=fc?, a=ga®, §#=hac, B=r*B and u=r2U. (16)
Equation (15) then becomes
fe+h? = 1]k (15)
and Egs (10) give immediately
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The first four of Eqs (18) now give a further relation:
freg="1, (19)
a copstant, with the last two becoming

hot 2(2-21) =0, b+ -2 =0, 20

Let us now consider the integrability condition

kh01 = th
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of Eqs (20). An easy calculation shows that this is
Zoo _Jolo T Ao, @1)

since the case f = g = I?/2 is equivalent to a/a® = y/c? and has already been excluded.

3. The field equations
The remaining field equations of GFT are
Ry =0, Ry =0 (22)
where R,, is the Ricci tensor
R,y = ~F :v,a+f gua).v+f A ~$v—f :vf (oo (23)

constructed from the ‘‘geometrical” connection fﬁv. (As we shall presently see, there will
be no need, for the purpose of proving Birkhoff’s theorem, to consider the equation

g[u"]’v =0, gm’ — \/'__E guv_)

With the Christoffel brackets given by (5) and the skew components of the connection
by (17), the symmetric components of the Ricci tensor which are not identically zero are
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Equating the above to zero and recalling the integrability condition (21) as well as the
integrals (15”) and (19) now requires the following set of equations to be satisfied:
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and
1
3k*+ ) ~12g—2k*(1?—g)B—a*(k*~B*) = 0.

(The last of these equations results from elimination of derivatives from
R, = 0.)
The integrability conditions
do1 = a1 and By, = By,

both lead to the same condition

hy h*+(B—g)° ’
— =34 ——, 26
"% Tt ke ZR 26)
However, (19) and (15') combined give
‘ 1
W= -(P-ge 27
whence
a h*(B—g)
2hh, = (—1242 =22 n(?-2g) = 2 ———x (I*-29),
1 ( + g)gl c ( g) r(kz_Bz)( g)
so that
— 2—
b _ (B=g)(P=2g) a8)

h k*-B?
Equating (26) and (28) now results in

1
3k%+ e —12-2B% =0,

so that
B =g =constant and 2 =0.

Since & = 0 implies that » = 0, we have already shown that Birkhoff’s theorem follows
(in fact, we obtain a flat space-time as the only solution possible: it is, of course, not the
solution when time dependence is not assumed).

4. Conclusions

The fact that Birkhoff’s theorem holds has far-reaching consequences for GFT.
As we know (Ref. [2]), the theory predicts, in the static, spherically symmetric case, a definite
model of the universe. In view of the theorem, the static solution becomes unique. There-
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fore, the corresponding cosmological model is a deciding test of the theory, in so far
as the cosmological evidence is capable of discriminating conclusion and, of course, pro-
viding spherical symmetry is a global rather than a local possibility. This remains to be
investigated. It is, however, difficult to see how to carry out such an investigation without
a priori invoking some kind of extraneous cosmological principle. Needles to say, such

a principle would disturb the inner coherence of the theory quite as much as it does so in
General Relativity.

Editorial note. This article was proofread by the editors only, not by the author.
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