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It is shown how the Pauli-Villars regularization method is affected by the violation
of the Appelquist-Carazzone decoupling theorem.
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It is well known [2, 3, 10] that in a certain class of gauge theories, including the stand-
ard Glashow-Salam-Weinberg (GSW) one, heavy particles can manifest themselves
in experiments performed at energy scales much lower than their masses. This effect,
which is obviously a violation of the Appelquist-Carazzone [1] decoupling theorem, can
arise in practical one-loop calculations from finite heavy-particle loops that do not vanish
in the formal limit my,,, — . The authors of Ref. [10] observed that, in the case of fer-
mion loops, these finite parts do not appear if one uses the Pauli-Villars (PV) regulariza-
tion [5, 9]. Their conclusion was that the PV regularization is inappropriate for studying
decoupling. The status of other than dimensional regularizations is quite important be-
cause of the problems in dimensional extension of the ys matrix (Appendix C). Therefore,
it seems worthwhile to give an explicit example of how the PV regularization works in
a theory with nondecoupling. 2

As our example we choose the fermlon mduced four-point Z boson interaction in
the GSW model (with possible additional heavy families). This example is especially
simple because the (Z,Z*)* counter term in the GSW action is not generated by the usual
multiplicative renormalization [6]. Thus, we will not have to refer to any particular re-
normalization scheme.

Let us consider a sum of diagrams shown in Fig. 1. The index i numerates all the N
fermions of the model. These diagrams give a contribution to the Z boson effective interac-
tion Lagrangian. The contribution calculated with help of the dimensional regularization
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reads:
N . 2 1252 12 . '
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m; = e o
where R[Z, m;] TN > 0. If the PV regularization is used the contribution equals
i=1 ..,

to R[Z, m;] only. The PV heavy regulator particles “do not decouple”, and they produce
the same finite local Z boson interaction but with the opposite sign. Therefore, the local
terms cancel out.

How can we generate the local part of the Z boson effective interaction in the tase
of the PV regularization? It cannot be obtained by redefinitions of fields and constants
in the original Lagrangian, as it has been already mentioned. It is neither possible to
get it from any other diagrams. One can check it by thinking of what diagrams can give
a contribution to the four Z boson interaction in the fourth order in the coupling constants.
All such diagrams, besides these of Fig. 1, fall into 2 groups!. The diagrams of the first
group are presented in Fig. 2. The loopy lines denote there vector boson, higgson or ghost
propagators. Such diagrams are not proportional to N. The second group contains dia-
grams with the physical higgson line not in a loop — such diagrams depend on m,, and
vanish in the formal limit 7, — co.

The thing we should do is just adding the local (Z,Z")* counter térm as an additional
counter term to the GSW Lagrangian. It can be justified in the following way: The PV
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! The Feynman rules for the GSW model given in Ref. [6] are used.
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regularization of divergent fermion loops is equivalent to replacing an original action S of
a model by a new one S’ where additional “infinitely” heavy particles appear [9]. They
ought to have the same couplings as the physical ones but may have nonphysical statistics.
In the case of the GSW theory the new action is no longer SU(2) x U(1) symmetric? be-
cause the Yukawa couplings of the regulator particles are not proportional to their masses
but to the masses of the corresponding physical fermions. Consequently, the regularized
effective action

See = —iln | DyDye™ (2)

arising from the GSW action S after integrating out all the fermions y could be SU(2) x U(1)
symmetric only if the regulator nonsymmetric contributions vanished in the limit M, gyjacor
— 0. Unfortunately, this is not the case, which is strongly related to the nondecoupling
effect. Thus, the PV regularization breaks the gauge symmetry. We are then allowed to
introduce not only gauge symmetric counter terms obtainable from multiplicative renor-
malization, but also all the other Lorentz-invariant, local counter terms of dimension < 4,
Once the usual renormalization constants are determined by some renormalization con-
ditions, the coefficients of all the additional counter terms are determined uniquely by the
gauge symmetry requirement [4].

Thus, if we want to use the PV regularization, we have to add, among others, the
k(Z,Z"*)* auxiliary counter term to the GSW Lagrangian. In the following, we shall find
the coefficient «.

If we write the gauge transformation of the U(1) and SU(2) gauge fields, respectively,
in the form:

6B, = (—1/g')0,2,

5W; = (—-1/g)a"ﬁ"—s”””[3”W,f 3)
then the transformation of the Z, field is:
0Z, = (2 +g'1) 120 (a— ) +cos O,(B* W, — B'W2) (4)

and, consequently:
o[6(2,27] = (g’ +8'7) 0 (a—)22,2"
+(quartic gauge boson terms). &)

Some other local term built out of fields present in S (2) must behave under the gauge
trasformation so that it cancels the first term in the r.h.s. of (5). Looking at the transfor-
mation rules for these fields (Appendix A) it is easy to convince oneself that the only possible
term is '

X = (const) [ dxZ,Z"Z"0,y, (6)

2 Let us remind that the GSW Lagrangian posesses the SU(2) x U(1) gauge symmetry also after
taking the spontaneous symmetry breakdown into account and expressing everything in terms of fields
with vanishing vacuum expectation values.
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Its dimension is 5, so it cannot be a counter term — it has to come from S, (2). The coeffi-
cient at the term (6) in S, (2) is given by the sum of diagrams shown on Fig. 3, and it co-
mes out to be N(g?+g'2)*/2/384n2y 3, where 2-1/?p is the higgson vacuum expectation
value. The diagrams of Fig. 3 are superficially divergent but the considered coefficient
is not affected by both the PV or dimensional regularizations. In the latter case it is due
to the actual finitness of the diagrams, and in the first — to the independence of the PV
regulator masses and their Yukawa couplings. Gauge transformation applied to X (6)
gives

N (g2+gt2)3/2 R
6X = — — B T8 7 | e (a—pHZ2,2
2 384ny X0a—p2'2,

+(terms involving scalar fields). » )]
Comparing (5) and (7) we see that only for

_ N (&+g")

T8 T 3san?

®)

the sum of the PV regularized effective action (2) and the counter terms can be gauge
invariant. The dots in (8) stand for terms not proportional to the number of fermions that
may be neccessary to cancel possible gauge dependence of the PV regularized diagrams
of Fig. 2, and higher order terms. Thus, we have recovered the result (1) of the dimensional
regularization. This ends our exercise with the (Z,Z")* effective interaction. Ope more
thing that may be worth emphasizing is that the 4Z-vertex is a simple example of the
heavy fermion nondecoupling in the standard model. Unfortunately, it is experimentally
irrelevant at present — the contribution to the ZZ — ZZ amplitude from the local part
of (2) can be at most 103 correction to the still unmeasured leading term.

The necessity of looking for additional, auxiliary counter terms makes the PV regu-
larization quite troublesome in theories with nondecoupling. In the Appendix B we present
the effective action (2) for a more general gauge theory, which shows what additional
counter terms should be expected in the pure gauge boson sector.

3 The final expression for the diagrams of Fig. 3 has been expanded in external momenta and the
relations between fermion masses and their Yukawa couplings have been used.
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In conclusion, we have given an example how the PV regularization works in a theory
with nondecoupling.

The author would like to thank Professor S. Pokorski for helpful discussions.

APPENDIX A

Fields present in S.; (2) (for the GSW theory) are the gauge bosons W,'%, Z,, 4, the
physical higgson ¢ and the nonphysical ones y;, i = 1, 2,3 (the notation of Ref. [6] is
used). If the SU(2) and U(1) gauge transformatlons parameters are defined as in Eq. (3),
the fields transform as follows:

SWL = —(1/g)0,8" + B*(cos 0,Z,+sin 0,4,)—B°W,?

ow}

—(1/8)8,8% + B*W,} — B'(cos 0, Z,+sin 0,4,),
86z, = (g*+8'%) 20, (a— B*)+cos 0,(B* W, — B'W,),
54, = —(1 /e)&,,(oc+ﬂ3)‘+ sin 0,(B*W,L — B W?2),
=3 [~B'1—F 1+ @@=l
51y = 3 [B'(v+ @) +(@+ B2~ B1s)s
512 = 3 [B 0+ @) —(@+ B +8' 251,

Otz = 5 [Bu— B xa+(a—F) v+ )]

APPENDIX B

" Here we present the effective action (2) for a model described by the action
S = [ dxp(id =V = dys—m)p+S.” (B1)

V and A are gauge fields (not necessarily independent) interacting with N fermions y.
The gauge group does not need to be simple or its representation — irreducible. We assume
the fermions have equal masses m. The coupling constants are absorbed in the fields V'
and A. S stands for terms not involving y. S, defined as in Eq. (2) reads:

1
ASYH = - C, | dx tr (A*4)— -~ (C1—%) | dx tr FLFL'”
4z’ 7 96n

1
+F5FR* ] + T de tr {(8,4"+i[V,, 4*])?

—} FR P4+ 2i(Fy,+ Fi) [4, £]+44,4,4'4'} + R[4, V, m] (B2)
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where
Fit = 0,4,%—0,4 % +i[ 4%, AV,
AR = VT4,

and the functional R[4, ¥, m] vanishes when m goes to the infinity. The constants C,
and C, depend on the regularization parameters, and diverge when the regularization is
taken off. The applied dimensional extension of ys is described in the Appendix C. The
part underlined by the dashed line appears only in the case of the dimensional regulariza-
tion. In the case of the PV regularization these terms should be expected as the additional
counter terms.

APPENDIX C

The evaluation of the effective action (B2) and the expression (1) with help of the
dimensional regularization required a proper “analytic continuation” of the ys matrix
to n dimensions. There are two commonly used “analytic continuations” of ys: in one
of them (due to t’Hooft and Veltman) ys is assumed to anticommute with the first four
7, s and commute with the ‘“‘additional” y,’s, in the other —it anticommutes with all
the y,’s. None of the prescriptions is free of ambiguities [7, 8], and the proper way of
dealing with this ambiguities in multiloop calculations is still unknown. In this paper
the second prescription was used. The ambiguities appear then in the calculation of Dirac
traces involving an odd number of y,’s: the expansion of such a trace in ¢ = n—4 depends
on how the trace is calculated [8]. For the purposes of this paper the following generaliza-
tion of the procedure suggested by Ovrut [7] was used: '

1) The traces were written in the form with only 4 free Lorentz indices (this was
possible for all of them).

" 2) They were transformed into the form (const)tr(ysy,y,y,7,) With the help of the
equations {ys,7,} = 0, {y, 7.} = 28, y2 =1, g8 =n, but in such a way that ys was
anticommuted with the contracted y,’s as few times as possible. '

3) The equation tr(ysy,»,7,7,) = 4i€,,,, Was used.

This procedure unambiguously leads to the results for Feynman diagrams in which
the chiral anomaly appears in the divergence of the axial current. If y5’s were not anti-
commuted in the way described above, the anomaly could appear in the divergence of
the vector current. This cannot be aliowed* because, once we have set the masses of the
fermions y in the action (Bl) equal, the vector gauge symmetry must hold. It should be
pointed out that the (Z*Z,)? term in (1) would appear also if the t’Hooft-Veltman “‘continua-
tion” of ys was applied.

4 As long as we want the dimensional regularization to preserve the symmetries under which both
the classical action and the functional measure are invariant.
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