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The problem of distribution of the spacing of compound nucleus resonances is studied
by using an identity which expresses a determinant in terms of the trace of log of the matrix.
An explicit connection between the two-point correlation function and the fluctuation
property of Gaussian Orthogonal Ensemble is shown.
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1. Introduction

The compound nucleus reactions are one of the most interesting nuclear reactions
which have been extensively studied for quite some time. In the beginning these reactions
in which one measures the widths and positions of neutron resonance levels posed a chal-
lenging problem to theorists because they involved very large number of nuclear configura-
tions. It was Wigner [1] who put forward the idea of random matrix to explain in a statisti-
cal way the widths and positions of these resonances. For the case of real symmetric Ha-
miltonians (Gaussian Orthogonal Ensemble (GOE)) Wigner gave a simple form of the
distribution of the spacing of the eigenvalues of compound-nucleus Hamiltonian known
as Wigner’s surmise.

Recently there has been a new interest in the spacing distribution because it has been
found [2] that quantum counter parts of classical chaotic systems show the same kind of
spacing distribution as the one of GOE. This has necessiated the need to develop simple
methods to derive spacing distribution.

Our aim here is to show that an identity which expresses a determinant in terms of
trace of log of the matrix can be used to obtain in a simple way to study the problem of
spacing distribution both for small values as well as for large values of the spacing.

We describe the formulation in the next Section. The concluding remarks are pres-
ented in Section 3.
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2. Formulation

The pioneering work on the spacing distribution was carried out by Gaudin [3] who
had studied this problem by first establishing an integral equation and then showing that
its solutions are spheroidal eigen functions. Further in these studies it was found that it is
much simpler if one first finds the probability of an interval which is free of any eigenvalue,
the derivative of which gives exact distribution. It therefore suffices to derive expression
for the probability distribution of the empty interval.

The starting point of our formulation is the expression [3] which gives the probability
E of finding an interval s around origin free of any eigenvalues. It is given by

E = det(1—n), 1)

where 1 denotes unit matrix and the matrix elements of the matrix » are given by

8/2

nm; = ." ¢2u(x)¢2v(x)dx’ (2)

-5/2

¢,(x) being the harmonic oscillator wave functions- They are given by [4]

$u(x) = 7~ 42" )TV exp (—F xD)H, (%), €)

H, being the Hermite polynomial.

In Gaudin’s method the probability E is expressed in terms of the eigenvalues of an
integral equation, the solutions of which are spheroidal functions. As will be shown shortly
the method which is developed here directly derives an expression for E by expressing the
determinant in terms of trace of log of the matrix. A great advantage of the present method
is that it does not need the properties of spheroidal functions to find an expression for E.

To proceed further we write the matrix element n,, as

1/2

Ry =5 I/z $2,(s0)2,(sv)dv, 4

by putting x = sv in expression (2).
We now use the identity which expresses determinant as trace of log of the matrix.
E can then be written as :

E = exp(Tr{in(1 —n)]). )

This identity was used earlier [5] to find a general expression for the Fourier transform
of the single eigenvalue probability density for the three Gaussian ensembles defined by
Dyson [6]. '

Expanding In and writing the spacing s in terms of mean spacing 7/./4m, where
N = 2m is the dimension of the real Hamiltonian matrix, we get from expression (5)

1/2 m-1
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2 1/2  1/2 . 2
"%(—%) —L _J:Zdvdu Z¢2"( >¢2u<\/; )] +] )

where t = s/(n//d4m).
The limiting forms of the sums in expression (6) are already known [3, 7]. For m — oo,
they can be expressed in terms of the following two functions

sin 2zt
SOy =14 =, (72)
2wty
sin nt(v—u)  sin nt(v+u)
) = 7o
8, u) nt(v—u) nt(v+u) (70)
Using expressions (6), (7) we finally arrive at the following expression for E,
1/2 1/2 1/2
t WEAY
E =exp| — D dof(v) —7 > dv du
-1/2 —-1/2 —-1/2
3 -1/2 i/2 1/2
t
(g, u))’—%(;) j dv J du f dwg(v, u)g(u, w)g(w, v)+ ] ®
-1/2 -1/2 -1/2 .

It is now a simple matter to expand sin functions in expression (7) and carry out the
indicated integration in expression (8). This gives us the following expression for E for
small ¢ ‘
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If one wishes one could expand the exponential further and write E as

2 7!4

=1l—t4 — = — 1+ ... 10
+ 36 1200 + (10)
This is the form which was obtained earlier by Gaudin [3] by using the relation between

spheroidal fupctions and Legendre polynomials for small values of ¢
We next consider the expansion of the probability E for large values of ¢. The leading
term in the expansion can easily be obtained by making diagonal approximation in expres-

sion (1) and making the substitution
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in expression (2). This gives us

2.2
E(t) = exp [(—— El—é_>+ ] (11)

This agrees with the first term of the asymptotic expansion of E(r) given by Dyson [8]
who had derived this expansion using Fredholm determinants and some exact results for
inverse scattering problems.

3. Concluding remarks

We have shown that the identity which expresses a determinant in terms of Trace of
log of the matrix can be used to find in a simple way the expansion of the probability of
finding an interval 7 free of any eigenvalue. It gives the expansion both for small as well
as large values of t. Looking at expression (9) we see that the coefiicients in the series in
the exponential form decrease faster than the one given by expression (10) in which the
exponential is further expanded. '

If one also considers the Gaussian Unitary Ensemble (GUE) which is the ensemble of
Hermitian Hamiltonians, then all one has to do is to derive similar expressions in which
one uses odd Hermite polynomials also. This can be done very easily by putting a minus
sign instead of plus sign in expression (7).

Our last remark is that since the function g(v, ) given by expression (7b) is related
to the two point correlation function, we find from expression (8) that unlike the average
properties of matrix ensembles like single eigenvalue probability density function which is
simply related to one point Green’s function, the fluctuation property like E is related in
quite an involved way with two-point Green’s function of the Hamiltonian. This is the
first time that such a relation has been explicitly shown.
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