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We show that the proton impurity in a neutron matter can create an inhomogeneity
in density which acts as a potential well localizing the proton’s wave function. At low densities
this inhomogeneity is a neutron bulge, whereas at high densities a neutron deficiency (bubble)
occurs. We calculate variationally the proton’s energy using a Gaussian wave function. The
neutron background is treated in a Thomas-Fermi approximation. The Skyrme interactions
are used. We find that the localized proton has lower energy than the plane wave proton for
densities below the lower critical density n; ~ 0.3n,, and above the upper critical density
ny = 2.2ne, where no = 0.17 fm~3. We discuss some implications of the proton localization
for magnetic properties of neutron matter containing a small admixture of protons.

PACS numbers: 21.65+f; 97.60.Jd

1. Introduction

The behaviour of proton impurities in a neutron matter has not been studied in a wide
density range. This is an interesting nuclear physics problem which has also consequences
for neutron star physics. Neutron matter containing a small admixture of protons is the
material which forms the inner crust and the core of a neutron star [1]. A crucial question
is whether the proton component remains a normal Fermi liquid down to very low proton
concentrations, or whether it shows a more complex behaviour. As was shown in Ref. 2],
magnetic properties of strongly asymmetric nuclear matter depend sensitively on the
behaviour of the proton admixture.

In this paper we study the behaviour of proton impurities in a neutron matter. It is
known that the proton chemical potential in pure neutron matter is negative as a result

* This work was supported in part by M. Sklodowska-Curie Foundation, grant F-071-P and
by Polish Ministry of National Education. - ‘
** Address: Instytut Fizyki Jadrowej, Radzikowskiego 152, 31-342 Krakéw, Poland.
*** Address: Instytut Fizyki, Politechnika Krakowska, Podchorazych 1, 30-084 Krakow, Poland.

(823)



824

of attractive proton-neutron interactions. More importantly, however, various parametriza-
tions show that it decreases fast with increasing neutron matter density, reaching a min-
imum roughly at the saturation density. At higher densities the proton chemical potential
increases and becomes positive at high enough densities (Fig. 4). This suggests that a uniform
density neutron matter surrounding a proton might not be the lowest energy state. A single
proton in neutron matter can lower its energy by inducing a density inhomogeneity around
it. This density excess at densities below n,, and density reduction for densities above n,,
make the proton chemical potential lower and also produce an effective potential well,
which can influence the proton’s wave function.

In order to judge if the nonuniform density configuration is of lower energy one has
to account also for the positive contributions to the energy. These arise due to the local
change of the neutron matter density, the gradient of the neutron density and the proton
momentum.

The problem we consider in this paper is closely related to the question of the effective
mass of a proton impurity in the neutron medium. Baym, Bethe and Pethick [3] argued
in a qualitative discussion that the proton effective mass in a neutron matter should be
considerably higher than the bare mass. This is due to the attractive proton-neutron interac-
tions. For highly asymmetric nuclear matter, containing a proton fraction of the order
of a few percent, the proton effective mass was calculated by Sjoberg [4], who found the
proton effective mass to be smaller than the bare mass. Sjoberg [4] assumed the system
to be a two-component Fermi liquid. If the arguments of Refs. [3] and [4] are correct,
there should exist a critical proton fraction, above which the proton effective mass abruptly
decreases to the values found by SjSberg.

Calculations which we present in this paper show that the single proton wave functions
in neutron matter containing a small proton fraction are of finite extension rather than
being plane waves, at least at densities below n, and above n,. This means that a single
proton is localized. In terms of the Landau Fermi-liquid theory, localization of quasi-
particles corresponds to a divergent effective mass [5]. Thus the calculations presented
here support the conjecture of Ref. [3]. :

The paper is organized as follows: In the next Seetion we present basic formulae
describing the energy of the proton impurity in neutron matter for localized and nonlocal-
ized impurities. In Sect. 3 we describe the Hamiltonian used to calculate the properties
of neutron matter and the proton chemical potential. The Thomas-Fermi energy density
for neutrons is also considered in this Section. In Sect. 4 the energy of the localized proton
is calculated variationally. The results of our calculations are discussed in Sect. 5. In the
last Section we briefly show implications of the proton localization for magnetic properties
of neutron matter containing a small proton fraction.

2. Proton impurities in neutron matter

" Let us consider a neutron matter containing a small proton fraction x. Our aim is to
compare energies of two phases: a normal phase (of uniform density) and a phase with
localized protons. We will proceed in the spirit of the Wigner-Seitz approximation and
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divide the system into cells, each of them enclosing a single proton. For simplicity the cells
are assumed to be spherical. The volume of the cell is ¥ = 1/np, where the proton density
np = xny for small x.

The normal phase is of uniform neutron density ny and the neutron chemical potential
is py. In the uniform density configuration protons are not localized and their wave funct-
ions are plane waves. The energy of the cell, which is a sum of proton and neutron energies,
reads

E, = Ve(ny, ne), (1

where e(ny. np) is the energy density of the uniform phase. For small proton density,
i.e. for low x, we can expand the energy density

e(ny, np) = &(ny, 0)+ pp(nn, O)np. )]
In the following we shall adopt abbreviations &(ny) = &(ny, 0) for the energy density of

pure neutron matter and pp(ny) = pp(ny, 0) for the proton chemical potential in pure
neutron matter. The energy of the cell is thus approximately

Ey = pp(ng)+Ve(ny)- 3)

Our aim is to compare the energy of the normal phase, where protons are nonlocalized,
with the energy of a phase where protons are trapped into potential wells, corresponding
to the nonuniform neutron density distribution, which most likely form a regular arrange-
ment. We treat this proton “crystal” in the Wigner-Seitz approximation.

Let us consider a Wigner-Seitz cell with nonuniform neutron matter distribution
n(r) surrounding the proton whose wave function is ¥5. In the local density approximation
one can identify the proton effective potential with the local proton chemical potential
tp, as will be shown in the next Section. The proton’s effective potential varies locally
with neutron.matter density n(r). This results.in a potential well up(n(r)). which affects
the single proton wave function. The energy of the Wigner-Seitz cell E,, is:

2my

2
E = fd%‘?’,"f(r) [— l— +,up(n(r)):! Yo(r)+ fd3r£(n(r))+BNJ‘dsr(en(r))z. 4)
Vv vV | 4

The first term is the energy of the proton confined to an effective potential well v(r)
= pp(n(r)). This is an attractive potential well. When the derivative of the proton chemical
potential with respect to the neutron density is negative, n(r) is assumed to have a maxi-
mum at the center r = 0. At high densities the derivative of the proton chemical potential
becomes positive and in this case n(r) is assumed to have a minimum at the center. This
is shown schematically in Figs. 1a and 1b. We(r) is the localized proton wave function.
In Figs. 2 and 3 we show schematically the proton’s probability distribution YL(r)Pp(r),
and the effective potential v(r) = pp(n(r)).

The two other terms in the Eq. (4) describe the contributions to the energy due Yo the
local change of the neutron Fermi momentum and the gradient of the neutron distribution,
respectively, in the Thomas-Fermi approximation. Here &(n(r)) is the local neutron matter
energy per unit volume. The parameter By is the curvature coefficient for pure neutron
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Fig. 1. The neutron density distribution in the Wigner-Seitz cell which lowers the proton’s chemical potential
for n < ni (a) and for n > ny (b)
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Fig. 2. The proton’s probability distribution in the localized state
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Fig. 3. The effective potential well corresponding to neutron density distributions of Fig. la and 1b. The
localized proton is trapped into this potential well

matter. In Sect. 3 we describe the choice of By. The cell volume ¥ in Eq. (4) is the same
as in Eq. (3).

Let us remark that Eq. (4) has a typical form of the energy of non-topological solitons
[6] for fermions interacting with background fields which form a bag-like configuration.
In our case the neutron density n(r) plays, in the Thomas-Fermi approximation, a role
of the background field. The proton is confined to the “bag” made by the neutron density
distribution.

To evaluate the energy E;, Eq. (4), one can derive the Euler-Lagrange equations and
solve them selfconsistently for Wu(r) and n(r) with appropriate boundary conditions.
If E, <X E,, the localized proton wave function is the ground state of the system. In this
paper we shall not attempt to find the minimum energy configurations by solving the full
Euler-Lagrange equations. Instead we will use a variational ansatz for the proton wave
function ¥,(r) and for the neutron density distribution n(r) containing variational parame-
ters which will be optimized to give the minimum energy.

In order to decide which is the ground state configuration we should compare the
energies Ey, Eq. (3), and E;, Eq. (4), assuming the same number of neutrons:

{ d*rn(r) = Vny. )
v

This means that the neutron density variation n(r) = n(r)—ny conserves the baryon
number:

j’d3r6n(r) = 0. (6)

Before evaluating the energy difference between the two configurations, 4E = E; — Eq,
we shall briefly describe the Hamiltonian we use.
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3. The Hamiltonian

We choose to work with the Skyrme forces [I13] to calculate the properties
of the neutron matter and the proton chemical potential. The Skyrme forces were often
used in studies of neutrpn star matter [7-10]. The Skyrme potential we use reads

o(F) = to(1+xoP)IF) +1 (K 28(F) + (P> + 1,k - 8k
+4 t3(1 +x3 P )n'8(r), (7

where k = i/2(§1 —62) acts on the right of the delta-function and ' is the same operator
acting on the left of (7). P, is the spin exchange operator.

The Hartree-Fock Hamiltonian corresponding to the contact Skyrme potential (7)
is of the form

H = 5 3t, —1,) (Van +Vnp) =35 (3t +1,) (Vad +Vnd) + H,, (})
where H, reads
1 1 ; 2 . ,
Hi ={— +By|int | =— +Bp | tp+n*[b+dn"—(0.5-x)(as+a,n")], )]
2mN 2mp -
with b = 3£0/8, d = 13/16, a; = 15(0.5+x,) and a, = £3(0.5+x;)/6. Here 7, and B, are
@ =Y V¢, t=N,P, (10)

B, =z [(t,+tIn+3 n(t;—1))], t=N,P. (11)

The proton fraction is x and the total density is n = ny+np, where n, = ¥ [¢"]2.
. v i

The Hartree-Fock Hamiltonian depends only on local densities of neutrons and
protons, their gradients and on local kinetic energy densities for protons and neutrons.
The latter. quantities for plane waves become

1, = 2319’3, t=N,P. (12)

In our calculations we use two sets of the Skyrme force parameters. The first set, (I),
is to = —1057.3 MeV fm?, #; = 235.9 MeV fm®, 1, = —100.0 MeV fm?, 7; = 14463 MeV
fm®, x, = 0.2885, x; = 0.2257 and 7y = 1.0. These are the Vautherin and Brink [11]
parameters modified as described in Ravenhall, Bennet and Pethick [12]. The second set (II)
due to Lattimer [10] reads: t, = —2499.85MeV fm3, ¢, = t, = 0.0,¢; = 16410 MeV fm?>*37,
Xo =.0.2; x3-=-0.1924 and y = 0.209.

3.1. Proton chemical potential in uniform neutron matter

The energy of the nonlocalized proton with the momentum k in a uniform density
neutron matter is

LR L
Ep(k) = ot E <k, Holk, T, (13)
P

&
[ <ke
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where kg is the neutron Fermi momentum. The proton chemical potential in this case
is the energy (13) corresponding to zero momentum

pp = Ep(k = 0). (14)

The proton energy Ep(i_c'), Eq. (13), for the potential (7) using Eq. (14) becomes

" k2 "
Ep(k) = 27‘; +4 (1, + 1)nnk? + pp(ny). (15)
P

We calculate the proton chemical potential using the Hamiltonian (9) since pp can be
expressed as
O0H

Up = — (nN, Rp = O). (16)
Onp

This gives the proton chemical potential in the form
e = 3 t(ty +15) +2n5[b+dnk—% (a3 +aand)]
+ny[dyni+as+a,(1 -5 yInk]. (17)

‘We show in Fig. 4.the protan chemical potential yp as a function of the neutron Fermi
momentum kg, for both sets of the Skyrme parameters. One can notice that pp decreases
with increasing neutron Fermi momentum reaching a minimum at neutron densities close
to the saturation density 0.17 fm—3.
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Fig. 4. The proton’s chemical potential in pure neutron matter as a function of the neutron Fermi mo-
mentum kg. The curves I and 2 correspond to the first (I) and second (I1) set of the Skyrme force parameters,
respectively
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3.2. The proton effective potential in a local density approximation

Let us consider the energy of a single proton in a neutron matter of slightly nonuni-
form density n(r). The proton will experience an effective potential associated with the
neutron matter inhomogeneity and its wave function ¥, will no longer be a plane wave.
The proton energy in a local density approximation becomes

1 - .
Ep = — <{k)*+ E (¥, [|0| ¥y, 1D, (18)
2mp
l<ke)

where (k) is the mean momentum of the proton, kg(r) is the local neutron Fermi mo-
mentum corresponding to the neutron density n(r). Using Eq. (15) this formula gives

1 -
Ep = J'd3" I:':E"n“ +1 (tl‘Hz)n(”)] [V ol? + up(n(r)) Y7 Wl{l . (19)
P
Expressing the proton energy in the form
Ep = Zn—'l- <k + fdsrwg(r)veff(r)WP(r) (20
®

we can identify the proton chemical potential up(n(r)) with the effective potential v(r).

The other terms in Eq. (19), the proton kinetic energy and the term representing the
momentum dependence of the effective interaction, can be combined into a kinetic energy
of the proton whose effective mass depends on local density:

1 +4 (¢t +t)n. (21
2my, 2mp

The second term here is proportional to the neutron matter density n(r), therefore it is
unimportant at low densities. At the saturation density this term for the first set of the
Skyrme force parameters is a less than 30 % correction to the kinetic energy For the second
set of the Skyrme parameters this term vanishes.

As we have explained, the density dependence of the proton effective mass is rather
weak for densities below the saturation density and will be ignored in the following. At
higher densities, n > ng, the formula (21) will be used.

3.3, Thomas-Fermi energy of neutron matter

We will treat the neutron background in the Eq. (4) in the Thomas-Fermi approxima-
tion. This means that for the kinetic energy densities 7, the formula (12) is used and an
appropriate gradient term is introduced.

In the spirit of the nuclear Thomas-Fermi model [14-17] the energy of the ncutrons
in the cell can be written as

En = | d*re(n(r)+ By | d*r(Vn(r)*. (22)
| 4 v
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Here ¢ is the energy per unit volume in the local density approximation and we use the
Hamiltonian H,; (9) to obtain it.

The coefficient By of the-gradient term in Eq. (4) is obtained as follows: In the nuclear
Thomas-Fermi model the gradient term contribution to the energy density is

By[V(nn+np)T% (23)

with Bg obtained by fitting the properties of the nuclei. Conventionally Bg is written as

Bs = L n (29)
8m
and # = 12 fm3 gives the best agreement with the binding energies [15]. The surface
thickness is however better reproduced for smaller values of  with n =~ 8 fm? giving the
best values [15]. '
The coefficient By (24) is appropriate for symmetric nuclear systems with equal number
of protons and neutrons. For isospin asymmetric systems a term of the form

1 .
- S[V(ny—np)]? (25
m

should appear [3, 18, 19] in the energy density with ¢ = #/3. Combining Eqgs. (24) and (25)
we find
2 1 ‘
By =371 (26)
8m

In our numerical calculations we use By = 31.6 MeV fm® corresponding to n = 9 fm?.
Also By = Bg for n = 12fm3 (Bg = 62.2 MeV fm®) is used in order to show how the
results depend on a particular choice of By. One can regard By(n = 12 fm®) as an upper
limit of By.

4. Variational estimate of the energy of the localized proton

We assume a simple trial form of the proton wave function and the neutron density
variation. For the proton wave function we use a Gaussian:

3r?
Po(r) = (3 nRE) % exp (— - ~2> . @n
4R;
Here Rp is the rms radius of the localized proton probability distribution. We treat this
quantity as a variational parameter and minimize AE with respect to Re.
The neutron density variation dn(r) is chosen to be:

on() =« (W:‘(r)s"p(r)— {—) (28)
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and the neutron density is
n(r) =.ny+on(r). (29)

Here « is the second variational parameter; a > 0 ‘corresponds to the neutron density
enhancement around the proton and a« < 0 corresponds to the reduction of the neutron
density in the proton vicinity as compared with the uniform background.

Using the trial forms of the proton wave function and the neutron density variation
the energy difference AE becomes

o 1 .
AE = 5’2 + fd3rW§(r ) [up(n(r)) — pe(ny) ] ¥p(r)
my Rp

+ Jdsr(e(n(r»—e(nn))JrBNaz $E w2 ;i : (30)
P
vV

The first term is the proton kinetic energy. The second term, which is attractive, originates
from the interaction of the proton with the neutron background. The third term accounts
for the local change of the neutron Fermi momentum. The last term is due to the gradient
térm in-the Eq: (4). The gradient term plays a stabilizing role for small vaiues of Rp.

We calculate the energy difference 4E for small proton fraction x, i.e. in the limit
of large volume V. The first and the last terms were calculated assuming that the Wigner-
-Seitz cell radius R, is much bigger than Rp, R, > Rp. Denoting ¥5 ¥, = p(r) and expanding
in 1/V we have

. | |
str [:ﬂp (nN +op—a T/') - ﬂP(”N)] D= J‘d3r[ﬂp(’1N +ap)—pp(nn)1p

1 P
—a j d’r -5’-3 (ny +ap(N) p(r). 31)

The integral in the second term docs not depend on the cell volume so that this term vanishes
in the limit ¥ - co. Expanding in the same way the energy density, we obtain from the
third term in Eq. (30) '

str [8 (nN +ap—a Pi) —a(an-l = Jd%ts(nN +atp:)—5(nN)] —apin(ny)

1 .
- v fds',‘[liu("N‘l’“P)—ﬂN("N)]- (32)

Here also the integral in the last term does not depend on the cell volume, since p(r) is
a Gaussian, and this term vanishes for large V.
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The above procedure allowed. us to separate contributions to AE which depend only
on the neutron matter properties and the first order corrections in proton density np. These

corrections play a crucial role in determining the critical proton fraction®x., above which
a delocalization transition occurs.

The energy difference AE is shown schematically as a function of the proton localiza-
tion radius Rp in Fig. 5. One can notice that there exists a range of values of R, for which
AE is negative. We denote by R} the value of R, corresponding to onset of instability,
i.e. the highest value of Rp for which AE < 0. R} corresponds to the minimum of 4E as
a function of Rp and the value of 4E at the minimum is 4E,,.

In Fig. 6 we show the minimum energy difference AE,, as a function of the neutron

AE (R,)

QEp [-----

Fig. 5. The energy difference 4E, Eq. (30), shown schematically as a function of the proton localization
radius Rp for a fixed value of «. The minimum AEy occurs at RE. R corresponds to the onset of instability
AE =0
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Fig. 6. The minimum energy difference AE,,, as defined in Fig. 5, as a function of the neutron Fermi mo-
mentum k. The curves / and 2 correspond to the first (I) and second (If) set of the Skyrme force parameters,
réspectively. Results for two values of ‘the gradient term coefficient By -are displayed
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Fermi momentum for both sets of the Skyrme force parameters and for two values of the
gradient term coefficient By. Only negative values are indicated. There are two distinct
density regions Where 4E, < 0. For the first set of the Skyrme parameters and for the
lower value of By these are densities below the lower critical density n, = 0.3n, and above
the upper critical density n, = 2.2n,. Negative values of 4E indicate that the localized
proton has lower energy than the proton whose wave function is a plane wave. The low-
-density localization corresponds to a local density enhancement around the proton
(« = 2.0), Fig. la. For densities above n,, the proton is localized in a region of lower density
as compared with the uniform background, i.e. there is a low-density bubble around the
proton, Fig. 1b.

In Fig. 7 the radius Rg, below which the instability occurs, is displayed as a function
of the neutron Fermi momentum for « = 2.0 for densities n < n,, and for a = —1.0
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Fig. 7. The maximum localization radius RZ, as defined in Fig. 5, as a function of the neutron Fermi mo-
mentum kg for the same sets of the Skyrme force parameters as in Figs. 4 and 6. The curves correspond
to BNy = 31.6 MeV fm®
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Fig. 8. The minimum energy difference AE,, as a function of the parameter « for density ny = 0.0185 fm3
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Fig. 9. The maximum localization radius R}, and the radius Rf corresponding to AEq as functions of the
parameter « for density ny = 0.0185 fm~3
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Fig. 10. The relative density excess at the center of the cell, n(0)/nn, for R; and R;‘ as functions of the
parameter «. The curves are for ny = 0.0185 fm~3

for densities n > n,. The radius increases with increasing density, reaches a maximum
and then decreases. These results correspond to By = 31.6 MeV fm®. The values of R%
practically do not depend on density. For By = 31.6 MeV fm® R} = 1.7 fm and for
By = Bg, Rp = 1.8fm in the whole density range n < n; (x = 2.0).

In Fig. 8 the energy difference AE, is shown as a function of a for fixed
density ny = 0.0185 fm~2 and for By = 31.6 MeV fm®. The minimum occurs at « = 2.5
and AE,, is negative for « in the range 0.70 < « < 10.0. In Fig. 9 we display the radius

™ as a function of « for this particular density. The radius increases with increasing values
of « reaching 3.6 fm at the highest value of «. Also the radius Ry is shown in this figure
displaying a similar behaviour, i.e. increasing with c up to 8.5 fm at o = 7.0. Corresponding
values of the relative density excess at the center of the Wigner-Seitz cell, én(0)/ny, for
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Rp = R and Rp = R§ are shown as functions of « in the Fig. 10. In the former case the
density excess first increases for a« < 2.0 and then decreases with increasing a. In the latter
case the density excess is rather constant and small after sharp decrease for a < 2.0.

5. Discussion of the results

We have shown above that proton impurities in uniform density neutron matter can
become localized at certain densities by suitable deformations of the neutren backgrourd.
The chemical potential of the localized proton

Hp(ny) = pp(nn) + AE(ny) (33)

is lower than for the nonlocalized case for n < n;, and n > n,. At low proton concentra-
tions x we can write the chemical potential of nonlocalized protons as
Oup

se(hn, np) = pp(nn) + . (”N)XﬁN- (34)
np

The last term varies as x*/® for small x. The chemical potential for localized protons docs

not depend on x for x <€ x, and

,ull;(”Na np) = ”![;(”N)’ : (35)

where p5(ny) is given by Eq. (33). This means that for low x the configuration with localized
protons is preferred energetically to the one with nonlocalized protons. At low densities,
however, the state with the protons confined to the nuclei-immersed in a neutron gas has
still lower proton chemical potential and forms the ground state of the system [3]. Thus
the state with localized single protons is a metastable one for n < n,. Calculations show
[3] that the nuclei disappear at a density slightly lower than the saturation density and at
higher densities the uniform state with delocalized protons has lower energy. Our results
show that, for low x, the state with localized single protons has lower energy than a uniform
configuration for n > n,. This means that in the ground state of the system for n > n,
the single protons are localized.

We have assumed that the neutron background can be treated in the Thomas-Fermi
approximation and the interaction of a single proton with the background is properly
accounted for by a local value of the proton chemical potential. The energy difference 4E,
Eq. (30), was calculated assuming that the proton effective mass depends only .on the mean
neutron density ny, Eq. (21). With this assumption we have neglecicd in the energy density
a term proportional to a(t1+t2)‘l/’£‘.l’l,(€!llp)2'which gives rise to a contribution to A4F
proportional to Ry °. Such a term is a small correction to the gradient term. To account
for the corresponding uncertainty we show results for two values of the gradient term
parameter By.

In the Thomas-Fermi Hamiltonian, Eq. (22), only the lowest-order: gradient term
is present. This Hamiltonian is thus valid only for sufficiently slowly varying.density
distributions. Higher order terms will be of importance for small values-of-Rp which-is:the
size of the neutron distribution inhomogeneity. One can.notice that for higher values of
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the parameter » we obtain slowly varying neutron distributions and the lowest order
gradient term is expected to be sufficient in this case.

In view of this fact one should take the values of 4E, with some caution, especiaily
those corresponding to small values of Rp. Higher. order terms are expected to increase
the energy E; at low values of Rp. On the other hand they are less important at higher
values of R, and, in particular, we expect the values of Rg, corresponding to the onset
of instability, to be rather insensitive to these corrections.

The calculations presented here are of variational nature so that the obtained energy
is an upper limit to the true energy. Exact solution will lower the energy.

Another uncertainty of our conclusions is related to the Skyrme parametrization
of nucleon interactions. The parameters of the Hamiltonian (8) are chosen to fit the prop-
erties of nuclei [11] and some calculations of neutron matter energy [20]. They are thus
supposed to account properly for nuclear interactions at densities below the saturation
den51ty ng = 0.17 fm-3. Extrapolation to higher densities is subject to uncertainty. We
use thus two sets of the Skyrme parameters which give a different high density behaviour.

The nature of the phase with localized protons should be studied more carefully. In
the Wigner-Seitz approximation we are not able to distinguish a solid phase and a more
disordered configuration in which “dressed protons” would behave very much like a gas
of nuclei in a neutron background. At very low proton concentrations one would expect
the latter possibility to occur.

6. Implications for magnetic properties of neutron matter with a small proton fraction

The localized proton phase would have profound consequences for the magnetic
properties of the neutron matter containing a small proton admixture. Localized protons
in' the presence of unpolarized neutron background (i.e. neglecting spin interactions)
would have their- magnetic moments unchanged and the system could become polarized
by a residual magnetic field in the same way as the usual ferrcmragnets. When we account
for the nuclear spin interactions which are quite strong it turns out that the neutron back-
groimd is polarized and the localized proton creates a magnetic domain.

Let us assume for simplicity the effective proton-neutron spin-spin interaction to be
a contact potential [21]

Vo = 776, « 620(r; —12). (36)

The main contributions to the strength g”" come from the one-pion exchange, the g-exchange

and the second-order tensor interaction [22]. The above three contributions, calculated
in Ref. [22], give the value g™ = —2.0fm”.

To see that the system is unstable with respect to small spin fluctuations we calculate

the energy variation ¢ associated with a small polarization dsy(r) = n(r)—-n(r) of the
neutron background in the cell along the direction of the proton spin:

Be = —— (1+G5™) Ssn()? + 2™ 3sn Wr (1) Wilr). (37)

N
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The first term is the change of the neutron energy density [2] expressed in terms of the
Landau Fermi-liquid theory; Gg" is the spin-dependent Landau parameter for neutron
matter; GY = 1.0 [23], and Ny is the neutron density of states at the Fermi level. The
second term is the interaction energy due to the spin potential Eq. (36).

Minimizing the energy variation de (37) with respect to dsy(r) we find

bsn() = — S ) (38)
1+GYN
and the corresponding d¢;,
Semin(r) = — — N (P [EER) F(I]T (39)
2(1+ Gy

Integrating de,,;,(r) over the whole Wigner-Seitz cell we find the energy of the cell with
the polarized neutrons to be lower than the energy with unpolarized background neutrons
provided there exists any proton-neutron spin interaction.

The magnetic moment of the cell, which we will call the effective magnetic moment
of the proton, is

Hets = Mp+Hn | d*résn(r). (40)

Here pp and py are the proton and neutron magnetic moments, respectively, and dsy(r)
is given by Eq. (38). The system thus behaves, in the Wigner-Seitz approximation, as a collec-
tion of magnetic domains, each of them possessing a magnetic moment u.. Such a system
displays a ferromagnetic instability as discussed above. .

Magnetic phase of the strongly asymmetric nuclear matter is of importance for neutron
star physics as it can produce a permanent magnetic field. Most of the neutron stars possess
strong magnetic fields of the order 108 to 10'2 G. This subject will be considered in detail
elsewhere.

We are grateful to P. Haensel and W. Broniowski for interesting discussions on subjects
considered here.
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