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THE INCOMPRESSIBLE PERFECT FLUID CYLINDER
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For a static incompressible perfect fluid cylinder, the physical radius R, and the param-
eter m of the exterior Levi-Civita solution, are numerically calculated in terms of the ratio
of the central pressure p, and the mass density uo.

PACS numbers: 03.40.Gc

1. Introduction

The exact solution for a static cylindrically symmetric incompressible perfect fluid
in General Relativity is not known although the field equations can be reduced to a very
symmetric first-order system of ordinary differential equations for two real functions,
see equations (1) below. The results of a numerical study of that system, for constant mass
density g = po, are given in the present note. h

We assume that the solutions are regular at the symmetry axis and can be matched
to the Levi-Civita vacuum metric at a finite radius, where the pressure p vanishes.

The qualitative behaviour of the incompressible perfect fluid is similar to that of the
perfect fluid with the equation of state u = o+ 5p. The latter case has been solved analyti-
cally by Evans [1]. This exact solution served as a test-bed for our numerical calculations
and is therefore discussed in Sect. 5.

2. The equations to be solved

Einstein’s field equations for static cylindrically symmetric perfect fluids can be reduced
to the first-order system [2]

y=Q0-y2)(Fy-2), z=(l-y2)(Fz-2) (1)

for the two real functions y = y(x) and z = z(x) (where a dot denotes derivative with
respect to x). For a prescribed equation of state p = u(p), the function F in (1) is deter-
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mined by

3 .
F=F(x) = 1”;’2 p(utp) =0, @

Once a solution to (1) and (2) is given, one gets the space-time metric

-1 .
ds? = Z—— dx* + e~ 2 (e*dE? +e*do?) —F¥dt? 3)

Kop
(x, being Einstein’s gravitational constant), simply by integrating from
y =k, = h @

The independent coordinate x, which is in fact the gravitational potential, can be
gauged so that the axis, and the surface of vamshmg pressure, are given by x = 0, and
x = x, > 0, respectively.

From (3) one finds the expression

* —1\2
o)
’ 0

for the physical radius R of the perfect fluid cylinder.

3. The behaviour at the axis and at the boundary

Introducing a radial coordinate, say r, which gives the physical distance from the axis,
the leading terms in the expansions of the metric functions k and 4 in (3), and x, near the
axis r = 0, should behave like

h~lnr, k~r% x~r2 (6)
which leads to '
z~r2, oy~ 1. U]

Since z bacomes infinite at the axis, it is convenient to introduce the reciprocal function
w = z-1. The system (1) then takes the form

=‘<1— %) (Fy—=2), w=(y—w)(F-2w). 8)

From (7) and (8) one concludes

2 . . F
Wo=0, yo=1-, W =2, m=—§ ©9)
0 0
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for the initial values of y and w, and their first derivatives, at x = 0 (the subscript O refers

to x = 0). The expression for y, can be derived from (8) by means of the Bernoulli-I’'Hospi-
tal rule.

At the zero-pressure surface x = x,, the two functions y and w must coincide and
have equal but opposite derivatives,

Vi = Wy, J}l. = _M}L (10)
(note that F; = F(x;) = o0).

4. The Levi-Civita solution
The general cylindrically symmetric vacuum solution [3]
ds* = ¢ *"[¢™(de’ +dE") + g’ dg”] - ¢*"dr? (11)

contains the real parameter m. The metric (11) can be cast into the form (3) by the substitu-
tions -

x=mlng, k=m?*lng, h=Ilng, w=y=m (12)

Matching an interior solution to (11), one infers from the continuity of the metric,
and its first x-derivative,

W=y =m (13)

as the only boundary condition.
The value m = 7 is distinguished because in that case the Levi-Civita solution is of
Petrov type D.

5. The Evans solution

In our notation, the Evans solution [1] for the equation of state u = pq+ 5Spis given by

a* —4e> 1 2(1—e*)
= W= = - 14
¥ 2(a’ —e*) z 1—4e* (14)

a2 a2__e6x
p=(L e y), Fo2f (15)

6 \4 a 6x

— —e
4
The parameter a is related to x, by

e = % a>2. (16)

Remarkably, the function w does not depend on a.
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The functions y and w as given in (14), and their first derivatives, take the following
values: '
At the axis (x = 0)

0 a*-4 C s 9a? )
Wo = U, Yo = 2(02—1) ’ Wo = 4, Yo = 2(02—1)2 ( ‘
at the boundary (x = x,)
yi=w =g =m,
.. 9a (18
(R U PR )

in accordance with (9) and (10).
The physical distance R from the axis to the surface is given by

a

2 dc \/ 2 = . (az—a+1):|
R = —_— = - - —— . 19
\/Koﬂo j \/(a2 -0 ({—1) Y Kolo l_ 2 aresm a’—1 (19)

1

R has its maximum at a = a, = 2+./3.
Fig. 1 illustrates the typical behaviour of y and w.
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Fig. 1. Graphics of the functions y(x) and w(x) of Evans’ solution, for different values of the parameter a. The
function w tends asymptotically to y = 0.5

6. The incompressible perfect fluid

For the equation of state u = p, it follows from (2)
3T -1

= *1Tr_1), F= fee— .
p = pole ) FiF ]

(20)
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The pressure is positive for 0 < x < x, and takes its maximal value p, = po(e’ —1)

at the axis x = 0.

The numerical integration starts at x = 0 with the initial conditions

The expression for y,

e*l—1

=0, =4 —-.
Yo Yo 3e¥1—2
Jo = —e G en-1)?

1)

(22)

(see equations (9) and (20)), has to be put by hand into the numerical code in order to start
the numerical integration of the system (8).

The energy condition 0

0.6

< pluo < 1 imposes the restriction

0<x;<In2, O0<y,<l
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Fig. 2. Curves corresponding to y(x) and w(x) in the case of incompressible perfect fluid, for the initial

value y, = 0.5. For this value, y = w at x = x; = In (6/5)
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Fig. 3. The curves y(x) and w(x) are plotted for the initial value yo = 1, which is the maximum allowed
for the energy condition. When yo =1, y=w at x = x; =In(2)
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Fig. 4. The parameter m of the exterior Levi-Civita metric is represented as a function of the ratio po/uq.
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Fig. 5. Representations of the physical radius R (coveniently normalized) of an incompressible perfect
fluid cylinder as functions of the ratio po/uo. The solid line represents the values obtained for numerical
solutions of the functions y(x) and w(x), and the dashed one is for their linear approximation

In Figs 2 and 3, the curves y = y(x) and w = w(x) are plotted for the two initial
values y, = 0.5 and y, = 1. The graphics for the functions y(x) and w(x) as seen in figures
2 and 3 suggest to try a linear approximation for the aforementioned functions y and w.
According to (21) and (22), such a linear approximation would then be given by:

¥ & yo+Yox = yo—3 (Yo—2) 3 yo—2)x,
W R Wo+wex = 2x. (24)

Note that the smaller the value of the ratio po/u, is the better the above approxima-
tion works, as Fig. 5 shows.

The numerical integration of the system (8), with F given in (20), assigns to each value
of x, the corresponding parameter m = y, = w, of the Levi-Civita metric which describes
the exterior gravitational field of the incompressible perfect fluid cylinder. Fig. 4 represents
the parameter m as a function of the ratio of the central pressure p, and the constant
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mass density u,. The Levi-Civita parameter m which takes for the Evans solution the
maximal value m = 1/2 can exceed m = 1/2 in the incompressible perfect fluid case (see
Fig. 4) if one only imposes the condition 0 < p < p,. Other considerations (e.g., stability)
might lead tp stronger restrictions on m.

Finally, Fig. 5 shows how the physical radius R defined in (5) depends on that ratio.
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Editorial note. This article was proofrezd by the editors only, not by the authors.
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