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BLACK HOLE EVAPORATION AND INFLATIONARY
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Evolutipn of evaporating black hole in inflationary universe is investigated for a Bar-
deen-Vaidya-deSitter line element. The Raychaudhuri equation is examined up to second
order terms in the luminosity in the vicinity of the black hole event horizon and the equations
governing the evolution of a black hole are given. A back reaction programme in a simplified
Vaidya-deSitter background is examined and the luminosity formula is found. The effective
temperature assigned to the Bardeen—Vaidya-deSitter black hole is proposed.

PACS numbers: 04.60.+n

1. Introduction

It has been known for some time that on a basis of quantum field theory black hole
emits radiation at a temperature proportional to its surface gravity [1]. The original
Hawking calculations of this effect in the Schwarzschild background were performed in
terms of particles observed near null infinities, J+ and J-, where they can be unambig-
uously defined. In a general spacetime, however, the concept of “particle” loses its universal
character so other concepts to describe radiation are needed.

Perhaps the most important consequence of the Hawking result is indication that
a black hole may evaporate which is classically forbidden by the area theorem. The profound
analysis of the black hole evolution, especially as the Planck regime is approached, certainly
requires incorporation of the quantum gravity effects into the picture of evaporation.
Although at present time there is no quantum theory of gravity satisfactorily describing
interaction of gravitational field with itself? the theory in which classical gravitational
field interacts with quantized fields is far better known [2].

It seems that the.consensus has been achieved that the physical content of the quantum
field theory in curved background is carried by the regularized mean value of the stress
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energy tensor T,z pgg in appropriate vacuum state. The stress energy tensor may serve
as the constituent of the source term of the Einstein field equations allowing in principle
to determine the further evolution of the system. The back reaction programme as under-
stood here is to solve the semi-classical field equations

Gyplel+ 28,5 = 87T p 8] Orza: 1.1

where G, is the Einstein tensor and 4 the cosmological constant, for a classical (i.e. totally
ignoring quantum fluctuations) metric. Unfortunately any attempt to find an exact solution
to the semi-classical back reaction equations is invalidated besides their nonlinearity by
the necessity of having at one’s disposal the detailed knowledge of the dependence of
{T,p>rec On a wide class of metrics. Such information provided by approximate analytical
methods are restricted to Einstein spaces [3-6] to which class the dynamical spacetime of
evaporating black hole obviously does not belong. To overcome this difficulty partially
a method based on simplified two dimensional models was invented [7]. Due to conformal
triviality in such models it is possible to evaluate (T,;)rpc and one of the advantages of
this approach is the possibility to investigate fairly complicated spaces. It is argued that
since in a two dimensional space information concerning scattering of field medes is lost,
the expectation value of the stress energy tensor for these lower dimensional models presents
the geometrical optics limit of (T, e in a physical four dimensional spacetime.
The black hole spacetime modeled by the line element of the Vaidya type were exten-
sively studied in the variety of contexts by a number of authors. The analysis of the evolution
of the event horizon by means of the Raychaudhuri equations have found its most elabo-
rated treatment in the article of York [8], though his investigation did not appeal to (T, ;)rzc
being quantal in spirit only. Studying the Raychaudhuri equations for the event horizon

o .od .
generators one concludes that the advanced time derivative of the expansion - 0 is negli-
v

gible in O(L), where L is the observed luminosity. Hence O(L?) behaviour is required.
The line of attack originated by Balbinot [9] makes use of the regularized stress energy
- tensor and provides the approximate formula for the luminosity of the black hole.
Recently there has been considerable interest in the effects of nonvanishing cosmolog-
ical term. The possibility of adding a cosmological vacuum density A to the Einstein field
equations raised the question of empirical justification of such a step. Observational data
indicate that the cosmological constant, if nonzero, is smaller than 10-122M%, and con-
sequently the present universe in large scale is accurately described by the standard
Friedman—Robertson-Walker line element. However, since anything that coniributes
to the vacuum energy acts as a cosmological constant it cannot just be dropped.
Studying the evolution of the standard mcdel “backwardly” in time one faces the
problem that very unnatural initial conditions have to be imposed for a model to fulfill
observational cosmology, and that these very conditions are connected with the famous
puzzles, most prominent of which are the horizon, flatness and monopole problems. At
the beginning of this decade Guth [10] proposed a scenario of the evolution of the universe
capable of avoiding the above mentioned problems. The most striking feature of the model
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is the app=arance of a inflationary phase described by the deSitter lihe element

yl
ds? = —dt*+exp (2 \/3 t) (dr* +r*dQ?). (1.2)

The cosmological constant A is proportional to Ty, Where Tgyr is a critical temperature
of the phase transition in a grand unification scheme.

It was pointed out that black holes could have formed at very early stages of the
evolution of universe as a result of initial inhomogeneities [11]. Some of them may survive
to our times. The similar problem has been undertaken in the context of inflationary model
[12]. Though the results obtained so far seem not to be conclusive it was indicated that
it is possible for a sufficiently large fluctuation to produce a black hole. Such the black
hole evaporates and consequently loses its mass, though its evolution, as compared with
the asymptotically flat models is certainly modified by the inflationary environment.

In this paper we shall consider the evolution of the black hole in the spacetime with
the positive cosmological constant. Throughout the paper the dimensionless units are
used in which c=G=k=h = 1.

2. The model

We shall start with the generalization of the Bardeen—Vaidya line element to the case
of the positive cosmological constant, which accurately describes, at least in the vicinity
of the black hole, the process of the emission of energy into the inflationary environment.
It takes the following form:

2m  Ar?
ds? = —e?* (1— — - —3-> dv? +2e%dvdr +r*dQ?, 2.1)
r- ’
where mand w are functions of the advanced time v and the radial coordinate r. The Einstein
field equations rplate functions m and y to the components of the energy momentum
tensor. It could be verified by a direct calculations that the relevant equations are

om

AT = —, (2.2)
v
7}
dnrT,, = 4nrT, = @ , (2.3)
or
P om
4rr-T, = — —. 2.4)
or

The spherically symmetric spacetime of an evaporating black hole described by the line
element (2.1) with m and y constant allows the existence of horizons of two types: the
event horizon and its cosmological companion. In a dynamical case however one has to
consider another surface of principal importance namely an apparent horizon.
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Since the choice of the vector field / and  in the form given by Carter [13] has proved
to be useful in studying the properties of the Bardeen—Vaidya spacetime we adopt this
convention and define

I* = [1,1¢F, 0, 0] (2.5)
and
ﬂz = [0: _e"'P, 0’ 0], (26)

where F = g,,. In terms of these vectors an expansion 6 is defined as
2 r
0=—Tr. @D
r

It follows that the position of the apparent horizon being the cutermost marginally trapped
surface is given by the smallest positive solution, if any exist, r = r,y, of the equation

Ar® = 3r+6m(r, v) = 0. (2.8)

Since we have been interested in the neighbourhood of the black hole, the pi‘eéumably
existing cosmological horizon will not be considered in this section. Defining the black
hole mass M(v) at a given instant of the advanced time as the value of m(v, r) such that

M(V) = m(v, r= rAH), (2'9)

M . . d. .
one can also define luminosity L = — e measured in the region where o is timelike.
v o7

Because of its definition &I-(J*), valid in the asymptotically flat space, which roughly
means that the outgoing null rays can never reach large distances, the evaluation of the
position of the event horizon requires knowledge of the whole history of the black hole.
However working only with thé approximate expressions York [8] pointed out that the

question which null rays generate the event horizon is a matter of qualitative degree and
' 2

d
he assumed that it is practically defined by the following condition: 3—;= 0. To be
v

exact this condition describes locus of inflexion points and hence slightly overestimates

the true position of the event horizon. Since

d’r oy (dr\* dr(d e’ om m ir\ ¥ om

___'P(_) +d—(——y-)-—-——+e"’——e“’—)——— (2.10)
v

av? or \dv dv r or r? 3 r ov

the event horizon to O(L) is given by
ren = ran(1—LB72), ©(2.11)
A

where f = rpyk, and Kk = 5 — 3 rag- The quantity defined as

LyY:S
oy oy oF
K=——+e"—F+3e"—, 2.

dv or z¢ or (2.12)
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when evaluated on the event horizon is the surface gravity. Inserting x, 6 and R,,,I“I” estimat-
ed at the event horizon into the Raychaudhuri equation

do
=, = *x0-% 0% — R 1P (2.13y

it could be easily shown that to O(L) one has

de
dv

i

0. (2.14)

It follows that to describe satisfactorily the dyramics of the evaporating black hole higher
terms in L should be included. Ingredients of Eq. (2.13) to O(L?) can be written as

X oF
K=35-—7—, (2.15)
r
1
6 =—F £2.16)
r
and
2 om
R I == —. 2.17
] af r2 av ( )

Combining (2.15), (2.16) and (2.14) and making use of (2.2) and (2.4) we have on the event
horizon

k0 = R, l*l". (2.18)

Therefore we can write the Raychaudhuri equation (2.13) in the form
— = —10% (2.19)

In order to determine the evolution of the event horizon of the Bardeen-Vaidya-deSitter
black hole it is necessary to evaluate the expansion up to the L? terms. Inspection of Eq.
(2.16) shows that the estimates of the partial derivatives of the mass functions are needed
since

( )= M- = 2 (220

mv,r=rEH=.~— V)— —— - . .
ﬁ ar |r=rAH

Here we apply the method proposed by Arai and Shimcda [14] which is based on the
observation that imposing regularity conditions on the form of the Bardeen tetrad [15]
components of the stress tensor near the event horizon it js possible to extract information
concerning its tensor components. Thus we have

T = L (3+ 3L + 4L 2.21
T 16mriy B p)’ (2:21)
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T L (143 2.22)
B 8nr B/’ @.

T = L (-2, AL (2.23)
C dnrky B B/ '

Using (2.10), (2.16) and (2.21)~(2.23) we have

0= - |en (-5 5] (224)
Brau B 28 B
The parémeter B may be written in the form

B = rau(3M ~rup). (2.25)

Equations (2.19) and (2.24) govern the evolution of the black hole. Now we invoke the
exact value of the position of the apparent horizon. If the condition 9M21 < 1 holds
Iay is given by

4

rAH = 2[1_1/2 cos (g + j) , (2.26)
37 3

‘where cosn = —3MAY?, with = < n < 3n/2. Hence 2M < rpy < 3M. Equations (2.24)

and (2.26) together with the solution of Eq. (2.19)

2
9= — : (2.27)
V—v_f

‘where v, is given by the condition M(v,) = 0, present rather complicated system and
‘probably require numerical calculation that is beyond the scope of this paper. We observe
however, that when the cosmological constant is small r,y = 2M and B = 1/2, and hence
our formulae reduce to the analogous expressions given in Arai and Shimoda paper [14],
with the luminosity :

L=
Vs

1— —1

M, IM; 14M; v
—1 ), (2.28)
vy v, vy

where M; is the initial mass of the black hole.

3. The back reaction

In this Szction we consider the influence of the quantized massless scalar field obeying
the conformally invariant Klein-Gordon equation on the black hole evolution in the
inflationary universe. To be more definite let us consider a simple but somewhat unphysical
‘picture in which imploding thin shell of null fluid forms a black hole in the spacetime with
the effective cosmological constant. After the black hole formation negative null fluid
-modeling the process of evaporation falls down the hole reducing its mass. Incoming
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negative flux is accompanied with the outgoing positive one. Assuming the line element
in the form given in Eq. (2.1) to be valid in the neighbourhood of the black hole and confin-
ing attention to O(L) effects one can further simplify the metric [16]

2M At
ds* = — (1— — - —;—) dv? +2dvdr+r?dQ*, (3.1)
r

Since the spacetime of the region to the past of the outgoing positive flux is static the
metric of this region is described by the Schwarzschild—deSitter line element characterized
by the initial mass of the shell M,. It follows that the larger positive root of the equation

Ar3—=3r+6M; =0 3.2)

may be regarded as a position of the static past cosmological horizon.

As is well known any attempt to evaluate the stress energy tensor of the quantized
field in a such background encounters the enormous mathematical complexity. In order
to make calculations tractable we follow a prescription in which simplified two dimensional
slice of the four dimensional space is taken to model evaporating black hole. It could be
shown [7] that due to transparent conformal triviality of the two dimensional metric written
in a double null form

ds* = C(U, V)dudv (3.3

the components of the mean value of the stress energy operator evaluated in the vacuum
state generated by the normal mode functions n could be written as

1

{Tudkec = — on C2Cy", 3.4

”n 1 1/2 ~—1/2 ’
(Todree = — EC Co'™ (3-5)
(Tuwiec = {Tudkee = —(48m)7'RC, (3:6)

where R is the curvature scalar and a colon denotes partial differentiation. The normal
mode vacuum is inappropriate in the study of the evolution of the black hole. The exact
form of the base functions defining the relevant vacuum state is unknown. It is possible,
however, to extract definite information concerning {7 ,s)pgc imposing on its form some
general requirements. The stress energy tensor should be covariantly conserved

Va<TaB>REG =0 (3-7)
and lead to the standard form of the trace anomaly

R

{T*>rec = by (3.8)
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The most general tensor satisfying (3.7) and (3.8) may be written as [17]

(Tpdrec = {TopdRec+taps (3.9)

where f,; is any conserved and traceless tensor obeying

Lo =ty =0 (3.10)
and
i} 0
—ty =—1t, =0. 3.11
ov ou ™ ( )

To select further the {T,;>ppc One has to impose appropriate boundary conditions. Since
our principal interest lies in the investigation of the process of evaporation it is natural
to look for an analog of the Unruh vacuum state. The requirement that invariants of the
stress-energy tensor be non singular on the future event horizon [18] seems obvious, what
means that when r — rey

C_2<Tuu>REG = 0. , (3.12)

The above discussion indicates that the central role in evaluating {T,;)rec is played by
C(u, v) function. The double null form of the Vaidya—deSitter line element is achieved by

means of the transformation
2M  arn\7! :
g dv—{1— — — -5" dr B (313)
r K

v =YV

du

i

where g satisfies the following equation

O i I M A\ 2y (3.14)
6rg ov r 3 g1=" )

The major difficulty with Eq. (3.14) and hence with the integrating factor g consists in the
fact that it contains the unknown mass function which is to be determined by solving in
a self-consistent way of the back reaction problem. It could be shown, however, that the
incoming component of the stress tensor (T, rgc is independent of the integrating factor
that is the remarkable feature of the two dimensional models. Eqs (3.5) and (3.9) applied
to the Vaidya-deSitter geometry yield [19]

1 /3M2 M M M A+ (3.15)
24 r? + r? e '

<Tvv>REG =
T

where a dot denotes differentiation with respect to the advanced time coordinate. To deter-
mine £,, we observe that when M = 0 the Unruh vacuum state preserves the symmetries
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of underlying manifold. It follows then that
tvu = —<nv>;EG (316)

Taking M to be constant, that results in the Schwarzschild-deSitter geometry, one can
recover the incoming component of the stress energy tensor in the Unruh vacuum by
demanding that

{T,»>rec =0 3.17)

near the past cosmological horizon. This procedure can be easily justified by the analysis
of the exact form of the Unruh base functions given in the form [20]

0o = [87|w| sinh (nw/kcy)]™ 2 exp (nw[2xcy) eXp (—iwv). (3.18)

Assuming the ling element describing the spacetime between the past cosmological horizon
and the future event horizon of the evaporating black hole to be smooth and covered by
(u, v) co-ordinates we have
1 (3M2 M M MiA 4 1,
(TyireG = 24 (3_7'7 - + s + - 6) T KcH- (3.19)
The foregoing considerations deserve some comment: the stress energy tensor consists
of term describing its local behaviour and the boundary dependent reminder, bearing
information of the global structure of the manifold, and thus the evolution of the black
hole is determined by the physics in the vicinity of the event horizon and the cosmological
flux. The actual form of the latter is obscure, since we have no detailed knowledge of the
geometry of the whole spacetime. (If the spacetime is constructed by topological glueing
of the segments with different line elements another term appears that we discard). Here
we accept the widespread point of view that the origin of Hawking radiation lies in the
quantum ergosphere.

Making use of (2.11) one can rewrite expression (3.19) in a more transparent form

2 2
KEn Kcu
T, = — 1-2% , 3.
{T,worea a8 ( )+ 48 (3.20)
where ¥ = —LB~2. Unfortunately other components of the stress tensor cannot be worked

out so easily.
As it is well-known in the case of a static black hole the temperature T is connected
with the surface gravity through the famous formula

K

T=—.
2n

(3.21)
Making use of (3.21) in the Schwarzschild—deSitter geometry one has

o2 2
<Tvu>REG = - 1‘5 (TBH—'TCH)' (3.22)
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Extending validity of the equation (3.22) to the dynamical Vaidya—deSitter background
the following expression for temperature may be written

Toy = ?(1—23’)”2. (3.23)
¥4 .

Now the Raychaudhuri equation gives

2

2
L= T:ZH AT —TéD (3.24)
what may be written, in virtue of (3.21) in the form
— riu(Keu —Kon)
4030n—Kiy)
We have approximated the right hand side of Eq. (2.18) by the Stephan-Boltzmann law
regarding T, to be

(3.25)

b

TN = —
Y 120r?

Ag(Tgu — Tén)» (3.26)
with Ap = 4nrZ,. Bquation (3.26) together with the luminosity definition is difficult to
solve. It should be noted, however, that for a small cosmological constant Eq. (3.25)
is reduced to the form obtained by Balbinot [21].

[+4
L=——, 3.27
M?—16a (3.27)

where a = (7680x)-1. The only relevant back reaction equation for the line element (3.1) is

M T (3.28)
dv
and hence (3.28) together with (3.26) yield no more information.

As we have assumed the process of evaporation starts with the black hole mass M; and
since 9M?21 < | the surface gravity of the event horizon is always greater than the surface
gravity of the cosmological horizon. Assuming the effective cosmological constant of the
inflationary phase as y ~ 10~'! [22], where 2 = 3y* one concludes that xpy reaches the
values comparable with (30r)-* for the mass of order 10->Mp;. Because of presumed
quantum fluctuation of the metric in the Planck regime the applicability of the formula
(3.25) is restricted to the masses above the Planck mass. Therefore any analysis of the last
stages of the black hole evolution cannot be performed without incorporation of the still
unknown quantum theory of gravity. In order to gain more detailed information more
sophisticated models are required.

A qualitative analysis indicates that it is possible to produce a black hole of a mass
of order of 10° My, if fluctuation region has the size of cosmological horizon [12]. According
to rough estimates (based on the static Schwarzschild model) such black holes are probably



861

to small to survive to our times. Taking typical temperature Tgyr ~ 10'* GeV, the surface
gravities of the event and cosmological horizon are comparable in magnitude and therefore
such black holes remain practically stable during the inflationary phase. Their further
evolution may be hampered during the reheating of the Universe.

So far we have considered the simplified version of the Bardeen—Vaidya-deSitter
line element in the context of the quantum evaporation of the black hole in the inflationary
universe. Following a similar method which leads to equation (3.23) one easily obtains
the formula describing the effective temperature in O(L) in the Bardeen—Vaidya-deSitter
background

Kg L am

1/2
Teguy=—1({14+ 5 — — . 3.29
B 2r < * Bz' or |r=rEH) ( )

Equation (3.29) differs from the expression describing the temperature connected with

. . 0 . .
the Vaidya—deSitter black hole by the a—m term. Unfortunately we have no information
r

concerning this term. Recent analysis, however, carried out in the Vaidya black Lole space-
time indicates that this term may not be negative in the context of the spin 1 fields [23]
that is rather unexpected feature of the vector bosons. It follows then that if a similar
situation holds in the presence of the nonzero cosmological constant the effective tempera-
ture will be shifted toward its smaller values and it could be made small by allowing the .
existence of N spin 1 fields.

4. Conclusions

We have investigated the dynamical behaviour of the evaporating black hole in the
inflationary universe. The latter were modeled by the deSitter spacetime with the effective
cosmological constant A = 3y2. By means of the Raychaudhuri equation we derived the
formulas describing the black hole evolution in the second order in the luminosity.

Studying the impact of the quantized conformally invariant massless scalar field we
showed that the luminosity is altered by the presence of the nonzero cosmological flux
at a rate proportional to the fourth power of the surface gravity of the cosmological horizon.
Since xpy is always greater than kcy the evaporation process cannot be stopped by the
accretion of the positive cosmoelogical fluid. Inspection of Eq. (3.25) shows that as kpy tends
to (307)"/? the luminosity unboundedly grows. It is argued however that the extension of the
validity of the luminosity formula below the Planck mass is highly speculative.

It should be emphasized, however, that we have incorporated only one temperature
scale into the picture of evaporation. Besides Ty there exists the ambient temperature
of the universe which is expected to fall exponentially in time.

Our results are critically dependent on the thermal hypothesis and seem to be valid
for the black hole mass comfortably above the Planck mass. One cannot, however, exclude
the possibility that in the last stages of its evolution the black hole undergoes explosion
with unboundedly growing luminosity.

I would like to thank J. Wiejak for valuable help.
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