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A SEQUENCE OF CLIFFORD ALGEBRAS AND THREE
REPLICAS OF DIRAC PARTICLE*
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The embedding of Dirac algebra into a sequence N = 1, 2, 3, ... of Clifford algebras
is discussed, leading to Dirac equations with N-1 additional, electromagnetically “hidden”
spins 1/2. It is shown that there are three and only three replicas N = 1, 3, 5 of Dirac particle
if the theory of relativity together with the probability interpretation of wave function is
applied both to the "visible” spin and *hidden” spins, and a new “hidden exclusion principle®
is imposed on the wave function (then “hidden” spins add up to zero). It is appealing to-
explore this idea in order to explain the puzzle of three generations of leptons and quarks.

PACS numbers: 12.90.+b; 12.50.Ch

1. Introduction

As it was observed recently [1], the Dirac anticommutation relations

{r*,r} = 2g" (1)
admit a remarkable sequence of representations having the form
N
LI " @)
\/N is
i=1

N =1,2,3, ..., where the matrices v}, i = 1,2, ..., N, are defined as basic elements of
a sequence of Clifford algebras,

_ s )’;} = 26;;8". 3
Except for N = 1 the representations (2) are reducible. In fact, they may be realized as
'r=y#®@1®..1, 4)

N-—1times
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where ¥ and 1 are the usual Dirac 4 x 4 matrices. It is so, since for any N > 1 one can
introduce, beside the linear combination (2), N-1 other Jacobi-type independent linear
combinations I}, ..., 'y of y{ satisfying together with I'f = I'* the anticommutation
relations of the form (3):

that admit the representation -(4). For instance, in the case of N =3

\/~(71+72+Y3)
r; = \/~ *i =72 (3

ry = \/- @i +72 -2

satisfy Eq. (5) and so may be represented as
rn=y@11,
rN=y"Qiy’y®1, m
rs=y"0y’ e,

where y* = iy%ly%y3.
Thus, the Dirac equation, say, in an external electromagnetic field,

[l (p—ed)—mly =0, ®)
may be rewritten as

[y - (p—ed)-mly =0, ; O

when it is considered in the representations (2) realized in the form (4). Here, ¥ = (¢4,0,...0n)
carries N Dirac bispinor indices o, i = 1, 2, ..., N, of which only the first one is acted on
by the usual Dirac matrices y* and thus is “visible” in the electromagnetic field 4* coupled
to y*. The rest of them are free (unless the mass m operates on them) and so are “hidden”
in the electromagnetic field. In consequence, a particle, if described by Eq. (8), can display
in the electromagnetic field only a ““visible” spin 1/2, though it possesses also N-1 “hidden”
spins 1/2.

In the case of N = 1 Eq. (9) reduces, of course, to the usual Dirac equation, while
‘in the case of N = 2 it turns out to be equivalent [2] to the equation discovered in 1960
by Kihler [3, 4]. The latter equation linearizes the d’Alembertian differential operator
in the space of antisymmetrical Lorentz tensors, realizing in this way the Dirac square-
-root proczdure for total spin 0 @ 1. Analogically, the general equation (9) realized this

—procedu;e for total spin 1/2 @ 32® ... ® 1/2Nor0 @ 1®...®12Nwhen N=1,2,
3,4, ... is odd or even, respectively.
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Discussing the Dirac equation (8) in the representations (2) one may consider two
natural interpretative options, where the physical Lorentz group of the theory of relativity
is generated either by -

N
=+ 3 3 I (10)
i=1
or by
Jiisive = L7 +1/22%, (11)

i i
where L = x"p’'—x"p*, Z!' = E[I“ ¥, ;] and I = 3 [[* '] = £}*. The theory of

relativity requires that in the case of the first oﬁtion the mass m should commute with
J*', while in the case of the second option it should commute with J%4,;,,. but not necessarily
with

N
Jhidden = I —Tilsivie = 1/2 Zz D (12)

(note that m commutes with Ji;,;. automatically, since in the Dirac equation (8) it must
commute with I'*),

In the present paper we choose the first option, where all matrices I'f, i = 1,2, ..., N,
(not only I'f = I'") are connected with the physical spacetime governed by the theory
of relativity. Then, the matrices I'f = I'* and I'}, i = 2, ..., N, (cf. Eq. (6) for the case
of N = 3) may be interpreted as the (relativistic) velocity of the particle’s “centre of mass”
and the relative (relativistic) velocities of the particles’ “intrinsic constituents”, although
our particle is actually pointlike in the physical spacetime. Thus, we have here to do with
an act of algebraic abstraction from the picture of a spatially extended composite particle.
It may be compared with the famous act of algebraic abstraction from the picture
of spatially extended rotator, that has led to the Dirac’s concept of spinning particle.

2. Probability conservation
From the Dirac equation (8) and its Hermitian conjugate we readily deduce the local
conservation equations
a *0pp .~
a_x’: (v F1F1'P) =0 (13)

and

0
P (p*Iiry ... IaMy) = 0, (14

where the second conclusion is valid only when N is odd, N=1,3,5, ..., and the mass
m commutes with the matrix I'; ... I'y (m commutes with I'# automatically). The conserved
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current appearing in Eq. (13) is not covariant under the full Lorentz group generated
by J*” defined in Eq. (10) (though it is covariant under the visible Lorentz group generated
by JThiuie given in Eq. (11)). In contrast, the current in Eq. (14) is covariant under the full
Lorentz group. Thus, in the case of our first option, the relativistic probability current
can be described by '

j* = nwy I3 ... T3l (15)

where N must be odd, N = 1,3, 5, ..., while the mass m must commute with I'3 ... I'S.
Here, ny is a phase factor making the matrix

Prigaey = nyl'y ... Ty (16)

Hermitian (it can be chosen as 1y = i'/2?™~Y®¥~2) Note that Py44., describes the hidden
internal parity. Since, due to Eq. (14), Py;44.. is a constant of motion, one can consistently

p hidd Y
impose on u the constraint

mIg . Ty =19 (17)
in order to guarantee that the probability density be really positive:
j° = nyp’IS ... Ty > 0. (18)

It can be seen, however, that the constraint (17) is covariant under the full Lorentz

group generated by J*' if and only if the wave function v is a scalar under hidden boosts
generated by

N
Rissen = 1121 3, A (19)

1=1,2,3, where A} = I'’T"\. Thus, the theory of relativity together with the constraint
(17) requires that (in the case of our first option) the wave function p should be a hidden
Lorentz scalar. Notice that the constraint (17) is always covariant under hidden spatial
rotations generated by

N
Tiasen = 1/26" 3 27, (20)

k,I,m=1,2,3, where I = ['’I'{I'T and I'} = il{[}TT} with [27,27] = 0 for i # j
and [Z7, I}]1 =0, [I'}, I'j] = 0. For instance, in the case of N = 3

T=0"®1®1, I=y"01®1,
M=1®d"®1, =101,
T=1Q1Q®6",. =101, 1)

where o™ = y5y%™. Here, the representation (7) is used.
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In the chiral representation where > is diagonal with eigenvaiues +1, the Dirac
bispinor indices o; = 1,2,3,4, i = 1,2, ..., N, of v are defined by four pairs of eigen-
values +1 of £} and I7, i=1,2,..,N.

3. Sector N = 3
In the case of N = 3 the constraint (17) takes the form
irsr3y = y. (22)

Here, in the chiral version of representatioh (7N and Q1)

;00 _ 0 lp 0 IP 5‘5_ lp 0 lp 0
rietafl, o(, §). mrime(l 2oy 5. o

where 1, is the Pauli 2 x 2 unit matrix. Thus, using the matrix notation ¢ = (y,,,,) where
the bispinor index «, is suppressed, the constraint (22) implies in the chiral representation
that
P11 ¥z Pis VPia
p = Y21 Y22 Yz Yau ) 4)
Pz VYia Y11 VY12
Y23 VPasa Y21 Y22

Then, the eigenstates of hidden chirality I'SI"5 (which commutes with the hidden internal
parity il'3I'3) are given by

Yii Y1z O 0 00 Pis  Yia
(+) | Y21 V22 0 0 (=) — 0 0 Va3 P2 )
¥ 0 0 Vi1 '/flz ’ ¥ Yis Yia 0 0 ’ ( 5)
0 0 Y21 P2z Y23 Yaa O 0
where
riry'™® = 9™ (26)
Making use of the usual charge conjugation matrix C in the chiral representation,
0 —i 0 0\
i ¢ 00 -
C=lo o o0i|™¢" @n
0 0 -i 0

one can construct from the wave function (24) the following five candidates for hidden
Lorentz covariants:
(i) hidden pseudoscalar (with hidden chirality +1):

Coas¥azas = 0 (28)
(if) hidden scalar (with the hidden chirality +1):

(C- 1)’5)aza3?’a2¢3 = 2i('l’1 2 -.'le): (29)
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(iii) hidden axial vector (with hidden chirality —1):

,

0, p=0,
2i(p13—¥24)s # =1
30
—(¥13+¥24) u=2, (30)
[ —2i(Y1a+¥a1)s 1 =3,

(C7 ' ases Vazas = 3

(iv) hidden vector (with hidden chirality —1):

(—2i(p1a—pa), #=0,
CtySy* _ 0, u =1, 3
( Ty )an;'paza; =3 0 u= ( 1)

0, u=3

(v) hidden pseudoteasor (with hidden chirality -+1):

o 2Ay11—¥22)» =1,
(C ! 5 [y ,v]) Varas = {2i(¥11+¥22)5, I=2,
s =2y +y2),  1=3,

. 0, k=1, I=2
-1 !
(C fo D v‘}),,,,w,,,, =40, k=2, I=3, (32)
0, k=3, I=1

It is seen that, due to the constraint (22) spoiling generally the Lorentz covariance, Eqgs.
(30), (31) and (32) can be Lorentz covariant if and only if all of them give zero. This requires
that the matrix y = (y,,,) should be antisymmetrical,

Vasas = ~ VPazars (33)

and in addition there should be .4 = 0. Since then, in particular, p,3 = w4 = ¥,3
= 914 = 0 (cf. Eq. (24)), one gets from Eq. (25) ™) = 0 and hence

ririy = . (34

So, I'3I'; must be a constant of motion, what implies that it ought to commute with the
mass 7 in the Dirac equation (8) with N = 3 (m commutes with the visible chirality I'; auto-
matically). ‘

Thus, in the sector N = 3, the theory of relativity and the constraint (22) enforce (in
the case of the first interpretative option) the antisymmetry (33) and the additional con-
straint (34). Then, in the sector N = 3 there is one and only one Dirac particle, namely
that corresponding to the hidden scalar (29):

i
A “4' (C lvs)azagwmaza; = A’/’a,lz’ (35)

where A4 is a normalization constant. In this case, only four components vy, ,. of y (with
o, suppressed) are NONZEro: Yy, = — Wy = YPag = —Yu3 # 0.
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4. Hidden exclusion principle

It is tempting to generalize the antisymmetry (33) to all sectors N =1,3,5,... by
conjecturing that all sector wave functions ¢ = (¥,,,,. ,,) must be antisymmetrical with
respect to the interchange of any pair of hidden bispinor indices a,, ..., ay. Such a con-
jecture, that may be called the “hidden exclusion principle” (or “Pauli hidden principle”),
treats the hidden indices a,, ..., ay as describing some identical Fermi degrees of freedom
(they differ, of course, from the visible index &, which only couples to the particle’s mo-
mentum and the electromagnetic field in Eq. (8)).

The hidden exclusion principle evidently restricts the sequence N = 1,3,5, ... to
its first three terms: N = 1, 3, 5. Moreover, it implies that in the sector N = 5 there is one
and only one Dirac particle, namely that corresponding to the hidden scalar

A'2—14—-saza3a4a5whaza3&4a5 = A'!Pa11234’ (36)

where A4 is a normalization constant. In this case only 24 components Vasasoaas OF (with
«; suppressed) are nonzero: y,,3, and its permutations (all equal up to sign of LA, X
It is interesting to note that for N = 5 the constraint (17),

i2roryrardy = g, 37
and the analogue of the additional constraint (34),

F§r§r4r5«p =9 (38)
are satisfied by -

Vasarasasas = CazasasasPai1234 (39

automatically. In fact, in the chiral representation

-2 170 10 110 Ip 0 1p) 0 1p 0 1

s _ 0 l, © Ip O I, O
r3rirers 1®( —1p)®(0, —lp)®(0 _1P>®<0 _1P>, (41)

what gives for (@ azoaos) = (1234)

(lzrol-.or4r ’P)1234 = Y3412 = P1234 (42)

and

and
(F§F§F2r§¢)1234 = ("1)2'/’1234 = Y1234 (43)

The additional constraint (38) satisfied automatically by the nonzero wave function implies
that 31’3315 must be a constant of motion and so it ought to commute with the mass
m in the Dirac equation (8) with N = 5.
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In summary, the overall wave function comprising three nonzero sectors N = 1,3, 5
has the form

Py
Yayaras s ' (44)

1p¢ 10230428,

Y =

where

Y = yry, +AP) 12 Wei12+ 2491234 Ve 1234
. ‘
= Z’z‘('P(1)+'P(”+4'P(3)+'P(3)+241/’(5)+'I’(5))_a (45)

with ¥ = A(y,), ¥ = A(¥,,12) and > = A(y,,1;34) describing three nonzero
replicas of Dirac particle. They satisfy Eq. (9) with some masses m'”, m® and m®. Here,
A = /29 is the overall normalization constant. The same formula works for the product
w'+y of two different overall wave. functions ¥ and ¥'. Of course, the kinetic part of
lagrangian density for the fields ™, N =1,3,5, is

Yoy - p—m)¥ = ; ™y - p—m™M)p™, (46)

where ¥ = ¥+y°, 7"v= (72.s,) and

t 0 0 m® 0 0
=20 14 0 |, m=|0 m® 0 . (47)
0 0 1/24 0 0 m®

Here, Tr 9-! = 1. One can formally write ¢ = o(N) = 29 [L(17N?— 56N +47)]-!, where

1 00
N=[0o 30 (48)
005

is the diagonal matrix with eigenvalues N = 1, 3, 5.

5. Conclusions

In conclusion, if the theory of relativity is applied to all bispinor indices involved
in Egs. (2) and (3), the sequence of representations (2) of Dirac algebra allows for probabil-
ity interpretation of solutions v to the Dirac equation (8) only for odd N = 1, 3, 5 (this
excludes from our discussion the case of N = 2 corresponding to the Kéhler equation).
At the same time, the (consistent) constraint (17) for y appears. When the hidden exclu-
sion principle is imposed on y, the sequence of N terminates at 5: N = 1, 3, 5. Then,
in each of three sectors N = 1, 3, 5 there is one and only one Dirac particle if the additional
(consistent) constraint (34) for. y with N = 3 is invoked. This constraint is enforced by the
theory of relativity and the constraint (17).



879

Thus, making use of the representations (2) of Dirac algebra, the theory of relativity,
the probability interpretation of y and the antisymmetry of y in hidden bispinor indices
o, ..., &y, taken jointly, are sufficient to provide the existence of three and only three
replicas for any Dirac particle with definite clectroweak and strong interactions coupled
to its visible bispinor index «,. The possible interpretation of these three replicas as three
lepton and quark generations seems to be appealing and worth a deeper exploration.

I am indebted to Stefan Pokorski, Rudolf Rodenberg, Dieter Rein and Lalit Sehgal
for helpful discussions.

Editorial note. This article was proofread by the editors only, not by the authors,
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