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Arguments are presented which allow us to derive the inequality 0 < e?/fic < @ i
a purely phenomenological way i.e. without assumptions about the dynamics of sources of”
the electromagnetic field.
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1. Introduction

The problem I wish to consider can be formulated as follows: where the magnitude:
of the elementary charge comes from? This is a very old problem. Einstein [1] noted in
1909 that there are two fundamental velocities in physics: ¢ and e*h; this should
be somehow explained. Sommerfeld [2] introduced the dimensionless combination e?/he,
henceforth called the fine structure constant, into his theory of the hydrogen atom and
realized that the particular value of this constant has to be explained theoretically. His
pupil Heisenberg took over this idea — see the recently published correspondence of Pauli
[3]. It is amusing to learn that Heisenberg did some numerical guesswork on the fine
structure constant and thought it good enough to be communicated to Bobr [3):

The true history of efforts to understand the fine structure constant will never be written,
because these efforts were not successful and as a rule did not lead to a published work
(see, however, the truly charming book by Lancelot Law Whyte [4]). Some important
byproducts were, however, obtained, the most important-being the Dirac relation eg = 1/2
[5]. This relation, properly understood, is a relation between the electric charge e ‘and the
quantized magnetic flux, at the (ﬁctltlous) end of which there is a magnetic monopole g. As
-such it 1s an imnportant physical law, confirmed experimenially with 2 very high accuvacy.
It is evident, however, that Dirac’s real objective was not the magnetic monopole (which

_* Presented at the Session of Department of Theoretical Physics of JINR in Dubna, held in Cracow,
May 23-25, 1988.
** Address: Instytut Fizyki, Uniwersytet Jagielloniski, Reymonta {, 30-059 Krakéw, Poland.

(897)



398

no one needs) but the quantized electric monopole. This is seen, for example, from the
following -words by Dirac [5]>

“The theory leads to a connection (eg = 1/2) between the quantum of magnetic pole
and the electronic charge. It is rather disappointing to find this reciprocity between electric-
ity and magnetism, instead of a purely electronic quantum condition, such as
hefe? = 1377,

In this lecture I will not give you the solution of the problem; you cannot expect me
to solve the probiem which Binstein, Heisenberg and Dirac found intractable. I will present
.only results of my thinking on the problem which allow, among other things, to make
the following quantitative statement on the magnitude of the elementary charge e:

0< éfhe<m.

This inequality is not very impressive, of course, but it is arrived at in a purely phenomeno-
logical way. I think I can say that in deriving this inequality I make no hypotheses. I use
only the general laws of quantum mechanics and of Maxwell’s theory. The general laws
I will us€ are: ’

The Gauss law.

The free Maxwell equations.

The principle of gauge invariance.

The principle of Lorentz invariance.

The basic laws of quantum mechanics (espzcially positivity of norm or unitarity).

2. The Gauss law

The constant e is the electron chargé measured at zero energy, for example in Millikan’s
experiment. The Gauss law

div E = 4mp

says that the electric charge is determined completely by the electric field at the spatial
infinity:

1 . .
Q=JQdV=—-fE°dZ,
4
T

where  is a closed, two-dimensional, space-like surface at the space-like infinity. It follows,
therefore, that to study the constant e as such i.e. as the electric charge at zero energy
only the asymptotic (1/r2) part of the electromagnetic field is needed.

This observation solves an important problem. We have all been taught Q.E.D.
and know that one has to make a difference between the bare charge and the renormalized
charge. This distinction is theoretically valid but the problem is complicated by the fact
that one does not know how to calculate the proportionality factor. Worse than that,
in standard calculations given in text-books this proportionality factor comes out infinite
which makes the whole discussion pointless. The physical reason which makes it necessary
to distinguish the bare charge and the renormalized charge is this: the electric field can
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create pairs i.e. the charge distribution which has to be added to the original one. However,
this effect is small if hw/mc? is'small, where o is the frequency of the field and m is the mass
of the lightest particle (presumably this is the electron). If the system considered has the
length scale I, then, by unczriainty principle, @ ~ 1// - 0 for [ - oo. This means that
at the spatial infinity the electromagnetic field is too weak to produce pairs and we do not
have to bother which charge we are talking about.

3. The free Maxwell equations

All charged particles are massive. We do not know why it is so but we are fairly certain
that it is so. Schwinger [6] has shown that the vacuum of charged massless particles would
be polarizable in a way inconsistent with the phenomenological validity of the Coulomb
law. This msans that at the spatial infinity the electric current must vanish (e.g. exponen-
tially) and the electromagnetic field is free; it fulfils the free Maxwell equations

0,F 1y +8,F,;+0,F,, = 0,
8"F,, = 0.

These equations do not hold for the whole field, which is not known, but only
for its asymptotic (1/r?) part. Therefore, to proceed further, we have to separate the 1/r2
part of the field from the unknown rest. A clean way to do this was proposed by Gervais
and Zwanziger [7]: to separate the asymptotic part of the field from the rest it is enough
to consider only those solutions of free Maxwell’s equations which are homogeneous of
degree —2 functions of space-time coordinates: for each 1 >0 F,(Ax) = A%F,(x).
Global solutions of Maxwell’s equations with this homogeneity property are singular
onthe light cone x - x = 0 but this is not important since we will use them only at the spatial
infinity. The homogeneity condition breaks down the translational invariance; this is in
accordance with the fact that the asymptotic part of the electromagnetic field is, in fact,
a translationally invariant quantity. )

Let x be the radius vector in the four-dimensional Cartesian basis in which the homo-
geneity condition holds good. Let us form two vectors

1) 1 v oo
xtF,, and 3 &,,,x"F*.

Using the Maxwell equations and the homogeneity condition one finds that both these
vectors are gradients of functions which satisfy the wave equation. One can show that these
two functions determine the electromagunetic field which is thus seen to be a very simple
object, determined completely by two homogeneous of degree zero solutions of the wave
equation. We have

i

x"F

Iy xu(auAv-avA.u) .
= —A,~— 0,(x"A,)+ A,
which gives the explicit expression for the first (electric) function

XF,, = —0,(x"A,).
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4. The principle of gauge invariance

The principle of gauge invariance says that the vector potential 4 « Should not appear
in equations of mathematical physics alone but only in the linear combination

eA,+0,8S,

where S is a scalar field which transforms under gauge transformétions in such a way that
the above vector is gauge invariant. An example is provided by the Hamilton-Jacobi
equation for a particle of mass m and charge e in an external field (¢ = 1)

g°(0,S+eAd,) (8,S+ed,) = m’.
S is given by the integral
—m [ Jdx"dx, —e | A,dx*

calculated for the actual motion. Under the gauge transformation 4, = A4,+0,f,S — S—ef
and the linear combination e4,+0,S is seen indeed to be gauge invariant. In the quantum
mechanics the classical action S, divided by i = 1 = ¢, becomes the phase of the wave
function. Thus interaction of the Klein-Gordon field R exp (iS) with the electromagnetic
field A, is described by the action

1 v 14

~ — | F F™d*x
16z '
+4 [ [3,RR+R*(3,S+ed,) (¢"S +ed") —m*R*1d*x.

The principle of coupling between the electromagnetic field and its source, implicit in this
expression, can be generalized as follows. We assume that an electrically charged system
has always to have a degree of freedom S, called phase, which enters the action only as
a part of the gauge invariant linear combination e4,+2,8:

1
the total action = — — | F,,F*d*x+W,
16z

W = [ L(ed,+0,S, ..)d*x.

(Dots denote the remaining degrees of freedom of the source). The phase S is the coordinate
canonically .conjugated with the total charge. Indeed, varying the action with respect
to 4, we have

1
oW = — Jj"é <4u+ " a,,s) d*x,

where j* is, by definition, the electric current. This means that varying with respect to S we
obtain

1
SsW = — f T 8,6Sd*x.
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Therefore the momentum canonically conjugated with the phase S is

1.
Ps = — —Jo-
€

The equal time canonical commutation relation is

| o
[; o), s<y)] = ieE=))

..yo

Integrating over the hyperplane x° = y° we obtain
(Q, S()] = ie,

where
Q = sjodsx.

Three comments will be useful.

The commutation relation [Q, S] = ie is seen to be universally valid for every charged
system. The canonical commutation relations for a gauge invariant system are known to
be inconsistent with equations of motion. Our derivation of the relation [Q, ] = ie passes
over this difficulty. The difficulty, however, is real and has to be remembered.

The relation [Qfe, S] = i might seem to resemble the relation between the square
of the amplitude and the phase of the harmonic oscillator. Despite of this formal
resemblance there is a basic difference: the relation between the square of the amplitude
and the phase holds only classically and cannot be consistently implemented in the quantum
mechanics {8] while the relation [Q, S§] = ie will be seen to be a meaningful mathematical
statement. The difference comes from the fact that the square of the amplitude i.e. the
energy is positive while the electric charge is not.

The basic idea of my work is to identify the phase with one of the two functions which
determine the electromagnetic field at the spatial infinity and to use the relation [Q, S] = ie
to reduce the asymptotic electromagnetic field to a closed mechanical system. “Closed”
means “described by an action integral” which, in consequence of this relation, will contain
the constant e. ’

The phase is identified with the function

S(x) = —ex"4,(x).

I will make two observations to support this identification. The first one shows that it is
esthetically appealing to make this identification. The second one falls only short of a proof
that the function —ex”4,(x) is indeed the phase of the field at the spatial infinity.
1. Consider a classical point particle moving in the field F,,, which is homogeneous
of degree —2. Multiplying the equations of motion
d*x* dx

= e 2

" ds? ds
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by x, and assuming that the potential 4, is a function hemogeneous of degree —1, one
finds the first integral

dx, (
mx" T —ms+ex"4,(x) = const.

This integral exists because the potential is assumed to be homogeneous of degree —1; thus
it is the relativistic generalization of the virial theorem in the classical - mechanics. One
sees that it is indeed appealing to identify the function —ex"4,(x) with the phase. I make
this observation because in the second one, which I consider a proof, there does arise the
problem of the correct choice of a numerical factor.

2. The phase can be associated with each field 4,(x) by means of the formula

S(x) = —e [ A (x—y)j"(»)dy,

where
8,J*(y) = 8¥(»)

and we agree to ignore all surface integrals. There is only one Lorentz invariant solution
to the last equation:

, 1.
i) =140, o oy y),

where (1/4n)5(yj1) is the half-retarded, half-advanced Green’s function of the wave equation.

This means that there is only one Poincaté invariant way to associate a phase with a given
field:

S(x) = — Ze; J A fx—y)o"5(y - y)d*y.

Assume now that 4,(x) is a homogeneous of degree — ] solution of Maxwell’s equations.
It is difficult to calculate the last integral for a generic field of this kind but one can argue
in this way. The asymptotic (at the spatial infinity) part of radiation produced in a scatter-
ing process, in which charged particles take a part, is surely close to being generic. The
asymptotic part of radiation is known to be equal to

A, (%) = O(—xx) Z €, :(l::) ,

where r2(u) = (ux)? — (uu) (xx), u, is the asymptotic (at the time-like infinity) four-velocity
of the n’th particle and

Y e, =0.
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For this potential the Poincaré invariant phase can be calculated term by term with the
result

S(x) = —% ex*4,(x).

This result is completely unambiguous but I maintain that the factor 1/2 has to be removed,
because it reflects a contribution from the surface term which we have agreed to ignore
in the original definition. (This is a mathematical detail which has no influence on the quali-
tative features of the theory. I do think that the factor 1/2 has to be removed. Should we
need it, however, we can restore it with completely clear conscience.) The phase S(x)
= —ex"4,(x) is a gauge invariant quantity, if we agree to add to A,(x) only gradients of
homogeneous of degree zero functions, which is natural. This sounds paradoxical; the
paradox is resolved, however, by the remark that the gauge has been fixed — by the homo-
geneity condition — only at the spatial infinity, in a way similar e.g. to the way one fixes
the Coulomb potential for the Coulomb field.

5. The Lorentz invariance

We have seen that the electric part of the electromagnetic field at the spatial infinity
is equivalent to a scalar field S(x) = —ex*A,(x) which is homogenecus of degree zro,
thus lives on the three-dimensional de Sitter hyperboloid and fulfils there the wave equation.
The action for such a field is

3, ~ i OS 08
constjd EJeg 3 o
where &’s are internal (angular) variables on the de Sitter hyperboloid. I propose to fix
the constant in this way: the scalar field on the three-dimensional de Sitter hyperboloid
has a spherically symmetric solution with a nonvanishing total charge. The spherically
symmetric solution is the only one which does not have its counterpart among global solu-
tions of Maxwell’s equations, because a global solution of Maxwell’s equations cannot
be spherically symmetric. This additional solution allows us to introduce the electric charge
into the theory in a completely clean, model independent way. I propose to choose the
constant in the action so that the previously established relation [Q, S] = ie is canonical
i.e. follows from the canonical commutation relations. This fixes uniquely the constant
in the action and the whole theory is summed up in the expressions for the total action

1 .S &S
P d3 ik B,
sazezj tVeg oa o

and the total charge

0= 1 as st
T 4me) 0& ’
z
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Z being an arbitrary Cauchy surface in the de Sitter hyperboloid. This theory is per se an
interesting object of theoretical inquiry. It is made important, however, by the claim,
‘which I tried to substantiate above, that the constant e? is physically identical with the
fine structure constant. The vacuum in this theory has to satisfy the condition

0@ =0, Q[0)=0.

This seems natural enough but it is interesting to note that this condition actually follows
from the Lorentz invariance of the vacuum. The vacuum is Lorentz invariant if it is annihi-
lated by all components of the angular momentum and the centre of mass motion:

OiM,, =0, M,[0> =0.

The integrals M,, do contain the total charge Q but do not contain the coordinate S (only
its derivatives) which has the consequence that the condition

0[g =0, Q10>=0

is necessary for the Lorentz invariance of the vacuum. A further consequence is that the
coordinate canonically conjugated with the total charge has to be periodic, otherwise the
vacuum will not be normalizable. Assuming the period to be 2r — a natural, in fact nec-
essary assumption for the phase — we obtain the charge quantization '

Q=ne, n=0+1,+2, ..

as a consequence of the Lorentz invariance of the vacuum.

6. The positivity of norm

The theory described in the previous Section reveals an intricate dependence on the
-magnitude of the coupling constant e¢?. To give an example of a nontrivial dependence
-we derive the inequality 0 < ¢? < =, mentioned at the beginning, as the positivity of norm
.condition for a class of charged states. Consider the vacuum expectation value

(0[5 W= 5|03,

where k and / are two- distinct points in the de Sitter space-time i.e. two distinct space-
~like directions. To simplify calculations and the procedure of renormalization assume that
the “time” i.e. the third (hyperbolic) angle tends to infinity. Using the vacuum definition
due to Chernikov and Tagirov [9] one finds (after an obvious renormalization, the renorma-
lization does not involve the constant e2, which is fixed)

<0l ®e 500
= const [k—1]72/7,

kandT being unit, space-like parts of k and /. Therefore the scalar product of two charged
states of the form

§ d?kf (Bye~ 500y
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will have as a kernel the expression
lE-T[_ZCZM

i.e. it will be the scalar product for the supplementary series of unitary representations
of the Lorentz group of Gelfand, Graev and Vilenkin [10]}. This product is known to be
positive definite only for 0 < e?/n < 1 (see [10], page 260, for the proof).

The theory leads in a natural way to several special functions for which the segment
0 < e? < 1 appears to be distinguished. This can be seen for the function

f(z) = 4n § dAsh® A exp [ —2z(A coth A—1)],
4}

z = é*/n,

which Lintroduced in [11]- This function can be extended analytically over the whole z plane
by means of the identity

@w
jdﬂ. th Ae—Zz).cothA
]

valid for z > 1. Points z = 0 and z = | are seen to be poles of the function f{(z), a fact
not immediately obvious from the definition of f(z).
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