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INCOMPRESSIBILITY OF ISOSPIN-ASYMMETRIC NUCLEAR
MATTER

By T. ALM* AND B. KAMPFER**
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A Hartree-Fock approach with interaction of Skyrme type is used to investigate prop-
erties of warm and isospin-asymmetric nuclear matter. The incompressibility turns out
to depend sensitively on the neutron excess and temperature. The interaction enhances
considerably the proton admixture in beta-stable neutron star matter.

PACS numbers: 21.65.+f

1. Introduction

Thermodynamic properties of nuclear matter are of current interest. In particular
the stiffness is at present under serious consideration because it contains essential informa-
tion on the nuclear equation of state (EOS). The EOS determines the flow properties
of colliding heavy nuclei as well as the characteristics of the supernova bounce and the
neutron star gross properties. One goal of the theoretic research in this field is the construc-
tion of better founded approximations of the EOS and the comparison with experimental
data. Of particular interest are the phase transitions in nuclear matter, such as the liquid-gas
transition and the superfluid/superconducting state and pion/kaon condensation and the
deconfinement. v

While heavy ion collisions point to a rather stiff EOS-(cf. [1]), the models for prompt
supernova I explosions seem to require a soft EOS (cf. {2]). It has been suggested to resolve
this apparent puzzle by taking into account not only the momentum dependence of the
nuclear forces (cf. [2, 3]) but also the proper isospin dependence of the stiffness at high
density (cf. [4]). Both ideas stimulated a considerable number of theoretical studies in
this line.

Already in 1981 Blaizot and Haensel {5] calculated the nuclear incompressibility
coefficient of isospin-asymmetric nuclear matter in Hartree-Fock approximation by using
effective interactions. Treiner et al. [6] tried to extrapolate the experimental data of the
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giant monopole resonance to the incompressibility coefficient of infinite nuclear matter.
For a rather long time the work of Blaizot [7] served as'standard reference for the nuclear
incompressibility X = 210 MeV. More recently Kolehmainen et al. [8] used the Thomas-
-Fermi approximation and effective interactions of Skyrme type for the determination
of the incompressibility of nuclei in coexistence with a neutron fluid. Lopez-Quelle et al.
[9)-applied the felativistic Dirac-Hartree-Fock approach to treat isospin-asymmetric nuclear
matter. They found results in agreement with nonrelativistic calculations relying on the
Skyrme interaction. A critical review on most reliable non-relativistic [10] and relativistic
[11] calculations can be found in Ref. [2]. For the completeness’ sake we recall also the
relativistic mean field approaches [12] and the series of derivations of operative EOS for
simulation of the stellar core collapse [13].

In the present work we study the nuclear EOS at finite temperature and arbitrary
isospin asymmetry within the Hartree-Fock (HF) approximation with effective interactions
of Skyrme type. A similar approach has been employed by Kuo and collaborators [14]
and Vinas et al. [4]. The method aIlows for a consistent determination of the proton and
neutron chemical potentlals and thus for the evaluation of the neutron, excess in beta-
stable nuclear matter. By using this approach one can estimate also the isospin dependence
of the incompressibility coefficient. We present our results merely in view of the applica-
tion to the structure and properties of neutron star matter which is, due to the long time
scales, in beta equlllbrmm

In Chapter 2 we recapitulate the necessary basic formulae for the evalnation. of prop-
erties of warm isospin-asymmetric nuclear matter. The resulting numerical findings are
presented in Chapter 3. The discussion and summary can be found in Chapter 4.

2. Basic formulae

In the calculation of the propesties of finite nuclei and infinite nuclear matter as well
a commonly used method is the HF approximation with effective interactions (cf. [15]
and further Refs. therein). These interactions describe also short-range correlations and
therefore, represent a kind of phenomenologic G matrix. Qften a suitable parametrization
is chosen to facilitate explicit calculations; the parameters are fixed by the requirements
of teproducing known nuclear matter properties, such as binding energy, saturation density
and so on.

We use -here the famous: Skyrme force in the form [5]

K, KNV Ik, K> = Q7 [1o(1+X0000) +5 (11 +1) (—K)°
+515(1 +X38,4)0%]
K\ VIK, Ky = Q7' [to+4 (8 —12) (k—K') +5 130"10,00n
+Q iyxo+1 t:%30" 100 @1

with the parametefsetz, = — 1057.3 MeV fm?; ¢, = 2359 MeV fm®, t, = — 100 MeV fm°,
= 14463 MeV fm®*3 x, = 0.56, x5 = 0, d = 1. '



909

Inserting the matrix elements (2.1) into the definition of the HF single-<particle (sp.)
energy E, which is determiried by the kinetic energy, the chemical potential, , and the
HF shift ZHF,

E(k) = h*k2(2m)™ ! — p+ ZHF(k), (2.2)
k) = Y Q[ Pk Q) EK) [k KV ke, K> — K, kI VIR, k']
a1

one drrives at
E (k) = h*K*2m) " —p, (2.3)
+J @k 2r) " [1o(1—xo)+ % t5(1 = x3)0 +3 (1, +3,) (k* + k' *)]n (k')
+ [ Pk QRr) 7 (162 +xo(+% ta(2+x3)0 +5 (8, +12) (K2 4+ K H)]n (k')

for the protons; for neutrons thc replacement n <>p holds. The nucleon distribution
functions n(k), I = n, p, depend on the temperature T and read

m(k) = [1+exp (E/T)]™". (24

Since we are interested in isospin-asymmetric nuclear matter, one has to solve'the system
of four coupled equations for the respective sp. energies and the distribution functions
for proton and neutrons self consistently. From the sp. distribution function the particle
densities follow as usual

o = 2 | d*k(2m) " *ny(k) (2.5)

(we consider not: too. high. tempefatures; therefore the antiparticle admixtures are negli-:
gible). Following Ref. [14] we introduce an effective mass approach in the form

Ey(k) = h*k*(2m{)™! + 801 s (2.6)
gor = [to(2+x0)+13+ (2+x3)0"1 % 0

~[to(1 +2x0) +13 & (142x35)0"] 3 ¢

= 3TLm3)” @mfoe)is Yra(ap) +(md) " *Omtjoedhs Fus(zd), @)
mE = m(L+3 m{2 + e+ —t)ed) @8)

fs2(2) = 427112 [ dxx? Tog (1 47 exp [ %%,
21 = exp ([—eoll/ ). @9

By inversion of Eq. (2.5) one can explicitly evaluate the f ;2 integrals in Eq. (2.7) and thence
calculate the chemical. pq_tentials of the nucleons.

For our purposes it is useful to have the EOS in the form p(e, o, T), where a describes
the neutron excess. . ‘

@ = (—@p) (eat+e) ', e =o.+e; (2.10)
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and p is the thermodynamic pressure. To this end we extent a method used by Jaquaman
et al. {16] to the generic case of arbitrary values of « in the range 0...1. To do this a virial
expansion of the f's,, integrals is exploited, which enables one to use the thermodynamic
relation

w = (0f/0g)| 1, (2.11)

for the explicit determination of the free energy density f. The pressure then follows from
(cf. [14] for computational details)

P = Qultn+ Oplty—S (2.12)
in the form
p = L t(3—a?—2a’x0)0® +z_‘—8— t3(3—a®—20%x;) (1 +d)o* *¢
+(1+5% mp[3t, + 5, —a(t, — )]0,
+(1 4+ my[3t; +5t, +alt, —1,)]10)],, (2.13)
where

I = 207 55(z0), 7y = Quh?/m{T)'2,
The incompressibility coefficient is defined as
K = 9(op/de), (2.14)

where again the virial expansion is used for the explicit calculation. A useful characteristics
of the stiffness of matter is the adiabatic coefficient I

I' = (¢/p) (0p/d0). (2.15)

3. Numerical results

Using the EOS (2.13), the pressure as function of the total baryon density ¢ and the
neutron excess « can be easily calculated for various temperatures. In Fig. 1 the isotherms
for symmetric nuclear matter are displayed. The curves show the known occurrence of the
liquid-gas phase instability (cf. [17]) for more detailed discussions). The critical tempera-
ture is in the order of 20 MeV. To get an impression of the isospin dependence in Fig. 2 the
isotherm T = 10 MeV is displayed for various values of the neutron excess a as function
of the density. One observes that the pressure increases with increasing neutronization.
Thisis a consequence of the increasing Fermi energy of the neutrons. Note that increasing
values of the neutron excess act as the increase of the temperature [18]: the liquid-gas
instability vanishes at sufficiently high neutron excess or temperature or both. This is in
accordance with relativistic HF calculations of Weber and Weigel [12]. They have shown
that for certain parameters in Hartree approximation (= mean field theory) there is the
phase instability in neutron matter which vanishes when including the Fock term. For
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the given temperature 7 = 10 MeV we find the critical value of the neutron excess o, = 0.6.
This example also demonstrates the strong isospin dependence of nuclear matter properties.
Therefore, the phase diagram of nuclear matter must be considered in a three dimensional
state space, e.g., in the variables T-n-«. The line of critical points g, and T..as function
of « and the instability region are considered in more detail in Ref. [18].
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Fig. 1. Isotherms for the pressure as functions of the density ¢ for symmetric nuclear matter
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Fig. 2. The pressure as function of the density for isospin-asymmetric nuclear matter at temperature
’ T = 10 MeV
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The chemical potentials of protons and neutrons as function -of the total density for
various values of the neutron excess are displayed in Fig. 3 in case of vanishing tempera-
ture. Using the expression (2.5) for the chemical potentials one can easily calculate the
neutron excess in- beta-stable . neutron star matter. The relation

Ho = tp+ i+ Hy (3.1)

holds for equilibrium with respect to non-strangeness changing weak interactions. For
the electron chemical potential y, the usual formula for ideal relativistic electrons is used
(we discard here muons). In stable neutron star matter the neutrinos diffused away, i.e.,
the neutrino chemical potential u, vanishes (n, = 0). Electric charge neutrality means
equal densities of protons and electrons, In Fig. 4 the resulting neutron excess is displayed
as function of the density for various temperatures. At very low densities the ideal gas
approximation appears as rather accurate. In comparison with the ideal gas approxima-
tion for the nucleons one observes however strong deviations in the region of nuclear
matter saturation density. This demonstrates the insanity of the ideal gas approximation.
At nuclear matter saturation . density the difference is rather large (x = 0.83 in contrast
to o = 0.92 [19] in ideal gas épproximation at vanishing temperature). This effect is, of
course, related to the liquid-gas instability, and cannot be deseribed in any ideal gas approxi-
mation. Increasing temperatyre results in an overall decrease of the neutron excess. For
larger densities (say, above two times the nuclear matter saturation density), the results
must be taken with caution; because the Skyrme parametrization becomes too repulsive
in this density region. Also the non-relativistic approach is not longer valid. Using the
ultra-relativistic ideal gas approximation for nucleons one finds the limiting value
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Fig. 3. Neutron (full lines) and proton (dashed lines) chemical potentials as function of the density at
vanishing temperature for several vataes of the neutron excess «. The heavy full line is for symmetric nuclear
' nmatter -
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% = 0.77 [19]. Even though the proton concentration in interacting beta-stable neutron
star matter is considerably larger than in case of non-interacting (ideal) nucleons, the
neutron excess is still too large to allow for the liquid-gas instability (see Figs. 2, 4).

In Fig. 5 the incompressibility coefficient (K, = K(g,) as function of the neutron
excess is displayed for different temperatures. The saturation point g, is defined by the
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Fig. 4. The neutron excess @ as function of the density for beta-stable neutron star matter in HF (full lines)
and in ideal gas (dashed lines) approximations for several temperatures
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Fig. 5. The incompressibility coefficient K 4t saturation density as function of the neutron excess @ for
‘ several temperatures '
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minimum of the internal energy or p = 0; hence g, depends on « and T. One observes
a drastic decrease with increasing values of «. This is a wanted effect for resolving the
apparent discrepancy of the stiff EOS needed for interpreting the flow effects in high-
-em_érgy nuclear collisions and the needed softness of the EOS in modeling the supernova
bounce [2]. Observe also the softening of the EOS with increasing temperature. The Fig. 5
shows that the chosen parameters of the Skyrme force (Eq. (2.1)) result in a rather stiff
EOS at vanishing temperature.

In Fig. 6 the adiabatic index I' as function of the density is displayed for vanishing
temperature. For high values of the density, I' increases rapidly because the short-range
repulsive correlations become operative. This behavior is in contrast with the ideal gas
approximation of the neutron-proton-electron mixture, which shows a slightly decreasing I'.
The differences between pure neutron matter and beta-stable neutron star matter are rather
" negligible. That is, the use of the EOS of pure neutron matter may serve as good approxima-
tion in neutron star calculations. Note the large difference to the results of the EOS 1I of
Baym, Bethe and Pethick [20], who considered the clustering of nucleons in the region
of sub-nuclear densities, not included here. The dip in their EOS is caused by the neutron
dripping-out at densities slightly above 3 x 101! g cm=3. At higher densities (i.e., slightly
below nuclear saturation density) the nuclei dissolve, and the results of Ref. [20] and ours

.......
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Fig. 6. The adiabatic index I” as function of the density at vanishing temperature (dashed line: beta-stable
neutron star matter in HF approximation, heavy dotted line: mixture of ideal neutron-proton-electron
gases, full line: pure neutron matter in HF approximation, dotted line: results of Ref. [20])
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are rather similar. Although the EOS of Ref. [20] shows the steep increase of I' in the
supranuclear density region as our EOS, there is some quantitative difference which may
be traced back to the too strong repulsive Skyrme force at high density.

4. Discussion and summary

We consider here warm isospin-asymmetric nuclear matter within the HF approxima-
tion with an effective and density dependent interaction of Skyrme type. Using a suitable
representation of the EOS we calculate the chemical potentials of the nucleons, and with
this at disposal the neutron excess in beta-stable neutron matter. Therefore, the nuclear
incompressibility coefficient as function of density and neutron excess and témperature
is accessible. We also consider the adiabatic index at vanishing temperature. :

The EOS is affected by the growing neutron excess in two ways: first, the pressure
increases, and second, as consequence, there is a critical neutron excess above which the
liquid-gas instability does not longer appear. The neutron excess for very dilute beta--
-stable neutron star matter is found to agree fairly well with the ideal gas predictions (note
however, that we do not include here clustering effects). In the density range 10-2
< @ < 3x10-* fm~* we find a strong influence of the interaction which results in a larger
concentration of protons. This is of importance for the suvrafluidity/supraconductivity
which are considered elsewhere.

In agreement with the findings of other authors we also get a very strong decrease
of the incompressibility with increasing neutron excess. This can be considered as support
of the idea to resolve the conflict of the stiff EOS as “observed” in relativistic heavy-ion
collisions and the need of a soft EOS to run successful supernova models with prompt
explosion by bounce- off. Growing temperature also considerably softens the EOS.

The adiabatic index as global measure of the stiffness of the EOS shows in a clear
manner the need of including repulsive correlations caused in the high-density region
by the hard core of the nucleon-nucleon interaction; at low densities the ideal gas approxi-
mation turns out to agree with the results of the HF approximation. Because of the lack
of bound states and clusters in the HF approach our EOS differs in the low-density region
from them of Ref. [20].

Altogether we state that the HF approximation allows one to parametrize the nuclear
EOS in an appropriate way. The parameters of the underlying effective density dependent
force are fixed in order to reproduce known nuclear properties. With this at disposal one
can extrapolate to beta-stable neutron star matter and fix some important values needed
for further investigations. Unfortunately, the present calculations are restricted to densities
not being too high (due to non-relativistic treatment) and not being too small (due to the
lack of including clustering effects).

In summary we present here an investigation of the nuclear EOS in a HF approach.
In agreement with earlier findings we confirm the very sensitive dependence of the incom-
pressibility coefficient on the neutron excess and the temperature. The proton admixture
in beta-stable neutron star matter is considerably enhanced by the interaction.

Editorial note. This article was proofread by the editors only, not by the authors.
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