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INTERMITTENCY ANALYSIS OF CORRELATED DATA
By BARBARA WOSIEK
Institute of Nuclear Physics, Cracow*
( Received September 20, 1990)

In this report we describe the method of the analysis of the dependence of the factorial
moments on the bin size in which the correlations between the moments computed for different
bin sizes are taken into account. For large multiplicity nucleus-nucleus data inclusion of-
the correlations does not change the values of the slope parameter, but gives errors signifi--
cantly reduced as compared to the case of fits with no correlations.

PACS numbers: 13.85.Hd

Recently there has been a great interest in studying fluctuations of particle density-
in small domains of phase space. It was found in a variety of processes that multiparticle
production may show the feature of intermittency i.e. large fluctuations increasing as the-
size of the domain is decreased [1, 2]. Searches for intermittency have been performed
by applying the method proposed by Bialas and Peschanski [1]. It is based on measuring
the scaled factorial moments of the multiplicity distribution in rapidity bins, defined as:

nn-1)...(n—g+1))

Kmy?
where 7 is the number of particles in bin of length J, the brackets denote averaging over:
the 4Y/8 bins into which the investigated rapidity interval of length 4Y has been divided
and the bar denotes averaging over events in the sample. It was suggested [3] that one
should correct for the rapidity dependence of the single-particle density distribution by
changing the normalization in (1) as follows

(n(n=1) ... (n—g+1)>
(n% '

One defines intermittency as the power-law increase of the factorial moments with decreas-
ing §, F~ 5%, where the intermittency exponent, b, measures the strength of the effect.
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* Address: Instytut Fizyki Jadrowej, Kawiory 26A, 30-055 Krakéw, Poland.
(1021)



1022

The procedure to obtain F’s at different § is as follows. For a given event the total
pseudorapidity interval (4n = 5 for the analysis presented in this report) was first divided
into bins of the largest size equal to one pseudorapidity unit. Next, the original 45 interval
was histogrammed into M (5 < M < M_,,) smaller bins of size § = 4y/M. In the present
analysis the bin size was varied down to § = 0.1 corresponding to M,,,, = 50. Thus, the
same data were used to obtain the moments for different subdivisions and smaller bins
are contained in larger ones. In effect the moments computed for various é are strongly
.correlated. Indeed, our analysis confirms this fact as it is shown below. As a consequence
the errors of average factorial moments on the F(5) vs 6 plots do not have any significance.
For example, one sees {4, 5] that the scattering of experimental points around the smooth
<curve is much smaller than expected from the quoted error bars.

In the previous analysis [4, 5] the correlations between the factorial moments computed
.t different & were ignored and the best fits were obtained by minimizing the y*-function:

N
7= ¥ (Floy=FlaYlo, 3

where F¢ . is the average factorial moment calculated according to (2), Fiy = ¢ 6y
and N denotes the number of points included in the fit. As the result we obtained fit parame-
ters with very large errors, especially for the slope parameter, b. In some cases the error
exceeded 1009 of the value of the slope. At the same time the fits were too “good” (x> per
degree of freedom was of the order 10-2-10-1). These problems were due to the fact that
the procedure applied was not correct since the moments measured for different bin sizes
are not independent. We made some attempts [5] in order to reduce the errors of the fitted
-parameters, but up to now the correlations between the factorial moments were not properly
taken into account.

Obvious way to include the correlations is to compute the whole covariance matrix
of various measurements:

FiFj-Fi- Fy
Cy= —m— s 4)
‘where indices i, and j label different bin sizes. To find the values of the parameters of
.a fitted function F¥(c, b) we minimize [6]:

Xz = ; Z( ?,exp_F?,th) (Ci; l) (Fq,exp—F;,th) (5)

‘with respect to ¢ and b. It is obvious that, if measured F{’s are independent, the covariance
matrix is diagonal and formula (5) reduces to (3). There are several advantages of including
‘the correlations in the fits. First, we get sensible estimates of the errors of the parameters
and what is more important we get a reliable estimate of the goodness of the fit. Moreover
positive correlations lead to reduced errors as compared to the case with no correlations.
On the other hand the parameters that minimize the correct y*-function (5) may differ
from those that minimize the simplified one (3). A curious feature of the fits with strong
correlations is that the best fit may lie below (or above) all the measured points rather than
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passing above some and below others [7]. Such a behaviour would clearly be wrong for
uncorrelated data. However, the reader may easily convince himself that this is correct
in case of correlated data. Indeed, if one point deviates statistically from its exact mean
value, the rest of them “must do the same” because of strong positive correlations. Hence,
all data points lie below or above theoretical prediction. A more detailed discussion of this
problem is given in the Appendix.

Let us check what are the effects of correlations for the dependence of the scaled
factorial moments on & in experimental data. We analysed two samples of events consisting
of semi-central interactions of oxygen and sulfur primaries with Ag/Br nuclei at 200 GeV/n.
The data used in the analysis are provided by the KLM Collaboration and the details
about the experimental mateiial can be found in [8). For both samples of interactions
the average multiplicities of produced particles are very large. In average about 270 (150)
particles are produced within 5 units of pseudorapidity for sulfur (oxygen) projectile. For
comparison a sample with smaller number of produced particles (in average 20 particles
per event within 4y = 5) consisting of proton interactions with Ag/Br targets at 200 GeV
was also analysed. The events statistics are correspondingly 124, 146 and 833 events for
sulfur, oxygen and proton primaries.

Figures la and 1b illustrate the correlations between the moments measured for
160 4+ AgBr data for two combinations of bin sizes. As expected, the correlations are strong
and positive especially between moments computed for adjacent values of & (Fig. 1a).
They remain strong even for maximally different 6 (Fig. 1b). The same conclusion can be
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Fig. 1a. Scatter-plot of the 4-th factorial moments measured in individual events for two neighbouring bin
sizes, 6y = 0.25 and 6y = 0.20
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Fig. 1b. The same plot as in Fig. 1a, but for two extremal values of bin sizes, 47 = 1.0 and dn = 0.1

TABLE I

Correlation coefficients, gij = C,-,-/\/ Cy - Cjj, calculated for the 4-th factorial moment for '°0+ AgBr
collisions. Indices i,j=1,...11 correspond to dn varying from 1.0 to 0.1

N\ 1 % 2 i 3 4 5 6 7 | 8 | 9 [ 10| 1
1 | 100 | 099 | 098 | 099 | 098 | 098 | 097 | 097 | 0.96 | 0.93 | 092
2 | 099 | 100 | 098 | 099 | 098 | 098 | 097 | 0.97 | 0.95 | 0.94 | 052
3 | 098 | 098 | 1.00 | 098 | 098 | 097 | 097 | 097 | 095 | 095 | 0.93
4 | 09 | 099 | 098 | 1.00 | 098 | 098 | 097 | 0.98 | 096 | 0.95 | 0.93
5 | 098 | 098 | 098 | 098 | 1.00 | 099 | 099 | 099 | 0.97 | 0.95 | 0.94
6 | 098 | 098 | 097 | 098 | 092 | 1.00 | 098 | 098 | 097 | 0.95 | 0.94
7 | 097 | 097 | 097 | 097 | 099 | 098 | 1.00 | 098 | 098 | 0.96 | 0.95
8 | 097 | 097 | 097 | 098 | 099 | 098 | 098 | 1.00 | 0.97 | 0.96 | 095
9 | 096 | 095 | 095 | 096 | 097 | 097 | 098 | 097 | 1.00 | 097 | 096
10 | 093 | 094 | 095 | 095 | 095 | 095 | 0.9 | 096 | 0.97 | 1.00 | 095
11 | 092 | 092 | 093 | 093 | 094 | 094 | 095 095 | 096 | 095 | 100

drawn from Table I where the correlation coefficients are listed. One can see that all values
are positive and even for the most different §°s they are bigger than 909,. For the moments
of smaller order, the distant correlations are still stronger exceeding 999 for the second
factorial moment. Similar analysis performed for 32S and p collisions with Ag/Br targets
reveals following regularity. More complicated are the eveénts (i.e. larger multiplicity per
bin) the stronger are correlations. For the 4-th factorial moment the most distant correla-
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tions: exceed 98 % for 32S+ AgBr collisions, while for p+ AgBr data we measured about
55%. We think that for low-multiplicities geomeirical inclusion of progressively smaller
bins does not necessarily cause strong correlations. It can also be seen from Figs 1 that
widths of the. moment distributions (projections of target diagrams on each of the axis)
are very large.

In Fig. 2 we show examples of the best fits to the data obtained by minimizing correct
x>-function, Eq. (5), for the three data samples. Note, that the individual errors are not
very meaningful in case of strongly correlated measurements. In Table II the numerical
values of the fit parameters and %2 per degree of freedom obtained from two fitting proce-
dures are given for the dependence of the 4-th factorial moment on oy for each data sample.

In Figs. 3, 4 and 5 the values of the parameters of the fit are shown as a function of the
order of the factorial moment for both correct fitiing procedure and simplified one. In
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Fig. 2. Best fits to the F* dependence on 7 resulting from minimizing formula (5) for 328, 150 and p collisions
with Ag/Br targets at 200 GeV/n
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. “TABLE II
Parameters resulting from the fit F* = ¢ - (87)~? for 3y from 1.0 to 0.1
" Correct ¥ Simplified x?
‘Inc 0.282+0.092 0.405 +0.047
32§ + AgBr 6 - 0.025 +0.006 0.023 +0.038
4?/NDF 10.1/9 0.1/9
. Inc 0.331+0.078 0.495 +0.047
1604 AgBr b 0.064 +0.011 0.060+0.039 °
22/NDF 8.8/9 0.3/9
Inec 0.996+0.078 1.068 + 0.047
p+AgBr b 0.037+0.045 0.139 £ 0.051
£*/NDF 10.4/9 1.6/9
C 32
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Fig. 3. Comparison of the values of fit parameters: intercept, a = In ¢ and slope, b obtained from the
simplified fit (M) and fit with correlations (A) for 328+ AgBr collisions

case of nucleus-nucleus interactions with large multiplicities the effects of including correla-
tions are not very large. Systematic shift toward lower values of the intercept parameter
is observed. The slope values do not differ significantly, but the errors are smaller by.-about
a factor of 4 as compared to the case with no correlations. A reasonable estimates of the
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Fig. 4. The same as Fig. 3, but for %O+ AgBr collisions

goodness of the fits were obtained (> per degree of freedom between 0.7 and 1.4). For
p+AgBr data the effect of including correlations is much stronger. From the fits with
correlations we obtain the values of the slope for the moments of the order greater than
3 consistent with zero. Thus, the results for low-multiplicity data are uncertain and unstable.
It is possible that more reliable results can be obtained for much higher statistics of events.
But still, one should realize that in case of low multiplicities only single events give a non-
-zero contributions to higher order moments computed for the smallest bin sizes.
Concluding, we have shown that the correlations can be easily taken into account
in fitting the dependence of the factorial moments on bin size. For large multiplicity nucleus-
-nucleus data inclusion of the correlations does not change the values of the slope parameter,
but gives errors significantly reduced as compared to the case of fits with no correlations.
For low-multiplicity data including correlations may change the values of the slope param-
eter. It would be very interesting to see what are the effects of including the correlations
in the fits for other experimental data, especially ete~ and hh collisions (low multiplicities
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Fig. 5. The same as Figs. 3 and 4, but for p+ AgBr coilisions

of produced particles) in which the intermittency signal was observed to be stronger than
in nuclear interactions [2].

The author would like to thank the KLM Collaboration for providing the data used
in the analysis. I would also like to thank W. Ochs, K. Zalewski and K. Fiatkowski for
the instructive discussions.

APPENDIX

Since our results seem at first glance to counter common intuition (the best fit passing

on one side of all data points), we have decided to present in this Appendix a simple analyti-

" cally solvable example. This example was born during the discussions with W. Ochs, J. Wo-

siek, K. Zalewski and K. Fiatkowski. It proves that the intuition developed for the uncorre-
lated data is misleading in the case of correlated measurements.

In one case however expectations for the uncorrelated and correlated data agree.

When all data points happen to lie exactly on the curve which belongs to the family we are



1029

T X K
1 T
——
<

]

o

Fig. 6. Hypothetical flat line fit to two data points ¥, and y,

fitting, then of course the best solution, correlated or not, gives x> = 0 and the fit passes
through all the points. This observation is trivial for the uncorrelated data. In general,
it follows from the semi-positive definitness of the covariance matrix, Eq. (4). This is just
an academic possibility since in practice the data never lie exactly on the fitted curve.
However, it was important to distinguish if for the sake of the following discussion,
Consider two data points (¥4, x,), (72, X2), and 7, > y, (Fig. 6) with the covariance
matrix:
C = (g; g:z) Ciz = Cyy. (A1)
Imagine fitting this data set by the straight line, y = ax+b. To avoid above mentioned
trivial solution, let us look for the best flat fit, y = b. In this case our family (labeled by
one free parameter b) does not contain the exact solution, and, as we shall see, the interesting
“counter-intuitive” result is possible and easily understandable. According to Eq. (5) we
minimize: '

R T
Xz(b) =i§,1 j2=:1 (yi"’b)xu‘(j; j“b) (A2)
with
1 Cy _C12>
Y= —— . A3
(xij) CIICZZ—C%Z ("‘Clz Cl1 ( )

The minimum lies at:

_ ua+ 21281+ (22 +212)72
X11+2)12+ %22

Hence, there exists a range of correlations for which the best flat line fit would lie below
or above both data points. Namely, when x,, < —y;2(¢11 < —x12), the fitted line passes
below (above) two data points. In addition the positivity constraint: y;; +2j;,+ %22 > 0
implies that the other diagonal element of the ¥ matrix (%, or x,2) is always bigger than

b (A4)
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— 212 Note that the negative sign of x,, means, according to Eqs. (A3) and (4), positive
correlations. Thus, it follows from the conditions (X2 < —Xi2 Of X11 < —x12) that
only for strong enough positive correlations the best fit passes on one side of both measured
data points,
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Fig. 7. Schematic illustration of the phase space of all possible measurements of y, and y,

All these conclusions can be immediately seen from Fig. 7 where the phase space
of all possible measurements of y, and y, is shown. The ellipses represent the contours
of constant y? and the inner one corresponds to one standard deviation (1 st. dev.) confidence
area. The probability that the exact result for y, and y, lies within the inner ellipse is 68.33 %.
The tilt of the ellipse and its major axes are determined by the covariance matrix via Egs.
(A2) and (A3). Minimizing Eq. (A2) for the flat fit, corresponds to searching for the mini-
mum of x? (;, y2) along the straight line y, = y, (labeled as D in Fig. 7), with b param-
etrizing position on this line. Obviously, the minimum lies at point M, where the diagonal
D is tangent to the contour of X2io. It is also clear that, for strong-enough positive correla-
tions (positive tilt angle a), the best fit M lies above (a < 45°) or below (a > 45°) both
7, and 7,. Note also that, in some cases, the best fit can deviate from both data points
by more than 1 st. dev. in the same direction, and the best solution M can still be acceptable.
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