Vol. B21 (1990) ACTA PHYSICA POLONICA No 12

STATIC, CYLINDRICALLY SYMMETRIC SOLUTION OF THE
GENERALIZED FIELD EQUATIONS
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The problem of finding cylindrically symmetric static solutions of the Generalized
Field Theory -is completely solved. The electromagnetic fields are shown to vanish faster
with the distanée from the axis of symmetry than the corresponding curvature of the associated
space-time. On the other hand, when the latter becomes a flat Minkowski manifold, the sym-
metric field is zero but the theory predicts exactly the Maxwellian electric and magnetic fields,

PACS numbers: 04.50.4+h

1, Introduction

The static, cylindrically symmetric solution of the nonsymmetric unified field theory
of electromagnetism and gravitation has been studied in a number of works by the present
author and his collaborators (Refs. [1-3 and [4]). No general solution corresponding
to the above symmetry has been found in spite of the fact that the results obtaired (espe-
cially in Ref. [3]) proved to be very interesting and led to a complete reformulation of the
nonsymmetric theory itself (Ref. [5]). However, no attempt was made in the earlier studies
to consider the effect of the so-called metric hypothesis which characterizes the Generalized
Field Theory as I call our reformulation of Einstein’s work.

It turns out that the hypothesis, namely, definition of the (hyperbolic, Riemannian)
space-time metric

nv

by the condition or equations

o A
I‘?IIV) = % alc(aau,v"'a;w,v_auv,a) = { } s (1)
mvj,
allows a complete resolution of the hitherto intractable problem of cylindrical symmetry.
Here, f?,,v) denotes the symmetric part of what I have called the geometric affine
connection. It is related to its “physical” counterpart by Schrédinger’s equation, which
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is not solvable for the latter,
Pl =T+38,l,
where
I, =TIty =35~ I3).

(Of course, I{,,, =0.)
In the Generalized Field Theory, the nonsymmetric field

8y = hpv",i'kpv = kvp"'kvm

is related to the geometric connection by the equations of Einstein

gnv,l—'f':lgav_f’vgnv =0, (2)
or
h v;d = Ngya™ “} ‘hcv" a h, = fdm k f‘l"f‘l ]k (3)
(3 f ﬂA Y 3 J.v . 4o 4 ey [Av)} 't uoe
. [ o ~ ~
kpv;l = kpv.).'- [ll . kav_ v . k,m = Ff,.;]h"-%-l'f;,,]k N (4)

For the particular symmetry we are considering, these equations are written out in full
in the Appendix.

. Once the skew components ff,,] of the conmection are algebraically determined,
we solve the field equations

R(uv)(f‘;y) = Rfv+f qufﬁv] =0, (5)

where RE, is the general relativistic Ricci tensor formed from the metric Christoffel symbols

{;v} '

Both the field tensor g,, and the metric tensor a,, are assumed to be nonsingular and then
equations (2)(4) imply that

g = K?a, ©)

where K is a constant while g and a respectively denote their determinants. An exception
is the flat (Minkowski) space-time for which we can expect the ficld 4,, to vanish when
we must also have K = 0.

Equations (5), do not constitute the full set of the Generalized Field equations but
the remaining ones:

R[m](f;r) = —f'[’uv];c’ @
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serve to define (up to a constant of proportionality) the skew field which happens also
to be proportiondl to the curl of the vector

r,

Thus the latter plays the role of the four-potential up to the usual U(l) gauge.

2. Preliminary results
We choose the coordinate system
(x°, x', x%, x3) = (t, r, 2, 6)

(with the speed of light in vacuum equal to unity) in such a way that the nonzero compo-
nents of the static, cylindrically symmetric field, which then become functions of r only, are

hoo =7, hu=—a, hyp=—a, hy3=—PB, kos=u ky3=u0 ®

These are the so-called isothermal coordinates. However, there seems to be no a priori
reason why the space-time metric should also be isothermal (even though it will usually
turn out to be the case for our symmeétry) so that we write

ds? = c*dt? —a?dr? — p*dz? — b%d0?, 9)

with ¢, a, p and b, likewise, functions of r alone. The nonzero Christoffel brackets then are

1 €,y
00 ~ a2’
1y _a

1{  q°

1} _ _pp
27 T
1] bb
33(° " g
21 _P
12 _p’

3 b,
{13}-—;, (10)
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the suffix denoting differentiation with respect to r. Hence the nonvanishing components
of the general relativistic Ricci tensor are -

11 = 7 - o -

P b a

a‘ \ py a b c
bb, (b a, = c
R§3=~—2—’(—1—1~—1+ﬁ+—1>. (11
a b, a p ¢
Also, equation (6) becomes
ay(ep+v¥)—au? = K32a*p?b3c>. ‘ (12

It may seem strange that we have chosen to impose the “isothermal’” condition on the
field rather than on the metric. In fact, it does not matter very much which choice we make.
What we have done appears to be reasonable ‘because, in the Generalized Field Theory,
the form of the field, rather than that of the metric, is assumed as given although both
are finally determined by the full set of the field equations (this is the “weak principle of
geometrization™). The question can also be raised whether the field tensor 4,, and the
metric tensor a,, can be simultaneously diagonalized. The metric condition alone does not
permit this conclusion to be drawn immediately. What can be shown directly is that the
components

a®, @*' and %
are necessarily zero. That the diagonalization of the metric follows is, then, a consequence
of the argument recorded in Ref. [l], namely, that, under the condition of cylindrical
symmetry, only the “1-2” offdiagonal component (of the metric tensor) is nonzero. These
remarks justify our form of both the field and the metric.

Inspection of the equations recorded in the Appendix now shows that the only nonzero
skew components of the geometrical conncction are as follows:
(i) When u # 0, v # 0 (the “electromagnetic” case):

f&a]: f[los]v f[123]’ f(213]§
(i) when u # 0, v = 0 (the “magnetic” case):

=11 =33 ~3 .
I'tisp T'ioayp Tio1ss
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and
(iii) when u = 0, v # 0 (the “electric” case):

1 ~2 ™3
Tasy I'iasyp Tz

It is clear that the three cases must be considered separately. We take them up in turn in
the next three Sections.

3. The mixed, electric and magnetic, case

If we assume that neither ¥ nor v vanishes, the following equations (2) survive:

¢
'YI_2__1‘?=0’

c

a Y
cc;|l==—=]=0,

(-2)

a
a1—2—1a=0,

a

B o - -
bb,l <F bt 'a—z =1I'?13]u +F[213]U,

a1—2ﬁa =0,

p

bl B o
ﬁl"ziﬁﬂ””l(ﬁ‘?)’

b, . o
7 u= I"[103]OC+I"E)13]7,

b b
“1—2f“=0=v1—2f0,
o o b
I'[213]a = F%23]d— ?1 v,
uc
Flogy = 452,
{033} x ¢
N v
Phy==2, (13)
@ p



934

as well as the equation (12). Hence

and either

and

Also

u=hb? ov=eb*

y=ke?, a=ka*® or ¢ =0;

pP=a or p(=a,=a)=0.

B = kb*+mb*.

Here k, m, e and h are constants.
It is easily verified that the equation

(B a ~ .
bb, (B‘i - zZ)= Ffis + s

(14)
(15)
(16)

17y

(18)

is identically satisfied. It is also readily seen that when ¢, = 0, the solution is either
impossible (when merely p? = a?) or trivial (when p, = O since, then, also b, = 0, the
space-time becomes flat and the electromagnetic ficld vanishes). When ¢, # 0 but p, = 0

the field equations are again incompatible and this finally leaves as the only option

y = kc29 o= kaz, P =a (cl # 0’ al # 0)

_ proving incidentally the isothermal condition. Then

and

19

(20)

(21

(22)

(23)

(24)
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Equations (21) and (23) can be immediately integrated to give
. a,
c,b=4, ” be = B, (25)
where A and B are constants, whence
b=—, —=—-—=4A— (26)

or
a=c* @n
without loss of generality since any proportionality constant between a and ¢ can be removed
at this stage by re-scaling.
Equations (22) and (24) now become, respectively,
c 2 c c?
Z oy 2(&) +(+2) 2 22 =0, (28)
¢ ¢ c c

and

2 2 2
c ¢ c 2AE c ¢\ € 2H” (¢ ¢\ C
__12+2(_1_*>__1_1__ﬁ(,1_1+_11)_1.+ “(_1+3>.;.=o, (29)

¢ ci c ¢ Jc Et\e o

eA hA
here E= — and H = —.
where kan .

Subtracting equation (29) from (28) gives

2
c c
[+ Defe 2+ B~ H] — = [Acie? - P’ + H'e™] - G0

However, differentiating ¢quation (6) and using (21)

2
c c
[kmc®* 2 4 e2c? — h?c?*] —2—‘ = [h2c** —ie’c?] -c; , @31y

while eliminating b between the first cf the equations (26) and the cquation (6) yields:
) ,

A
cfcz*ZI. - T (kmc2+21+8262_h2c211)’ (32)
where
K?

Equations (30), (31) and (32) must lead to an identity. Hence
m=90 (33)
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(B = kb® and h,, = ka,,) and elimination of ¢, and ¢, gives
A2+ A%t +(1 +20) A% h*c** + [A(A~1)LE*h* —(1 +24)A%e*h?
+(1—A)LH?* A2+ ) A*h*e*]c*+?** = 0. (34
Hence, the only possible solution is obtained if, in addition to (33),
A=1 e*=h. (35)
‘The solution then becomes

bs

4
ds? = — (d*—dr*—dz?)— 22 do?, (36)
4o r .

r—ro\? b
(strictly speaking, a = ¢ = ( p °> , b=-—" but the constant r, can be put equal
o r—re

1o zero without loss of generality, the axis of space symmetry being chosen as r = 0;
‘the constants a, and b, are, of course, inserted for dimensional reasons). We now have

. 2h biad N 2e biay
I‘[103]='E—;‘T, F[123]=—k~%, h=ie (37)

and so the skew field, as calculated from equation (7), has nonzero components

n
Jfos = % =
r

in the transverse (0) direction and
n
faa=+% -3
r

in the radial (r) direction, both, of course, normal to each other and in the plane norma
to the axis of the space symmetry.

Without attempting to interpret the above solution for the moment, we now pass to
‘what is perhaps the most significant result of this article. It reflects on the validity and
coherence of the Generalized Field Theory. Thus, let us assume “without prejudice”
(i.e. without trying to solve a priori the resulting equation) that the last two terms in the
-equation (24) cancel out. It other words, we effectively solve the empty field equations
-of General Relativity though we retain a meaning of the skew field. The former are

¢y, by

— 4 — =0, 38
c,+b (38)

b a '
c_1£+_1_1+_1_1_ﬁ(.,+_+_>=0, (9

c b a a
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-+ =0, (40)

Lyt (41)

Consider a solution of the form

c=r', a=1r", b=r", A u, v constant.

Then
Aty =1
and
2(A-D+u(p—-D—pu(p+1) =0,
so that
p=AiA=1) and v=1-4 42)
Therefore
N hb*ec, Ih Ah
| St e Ll e R L 7L 43
CE R k' “43)
- A(A—1
iy = N1 2 (44)

This, of course, is our previous solution (37) with A = 2 and h = +e. However, we now
notice that as

A =0,

the skew field, as defined by the equations (7), tends to a constant value in both, 03 and 23,
directions providing that we assume that simultaneously

k-0

as well.
This is precisely the classical Maxwell solution for static cylindrical symmetry (fo3 = A,

. h e .
23 = e correspond to the solution - and -, a result which follows from the transforma-
r r
tion laws of tensors). Moreover, the limit is
c=a=1 and b=r

s0 that the background space-time is Minkowski. What this means is that the Generalized
Field Theory collapses and, because k = 0, the symmetric field 4,, vanishes. Nevertheless,
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the corresponding recovery of the Maxwellian solution from its structure is a clear indica~

tion that the theory itself is, so to say, “on the right track”.

We should point out that the metric relation (6) now requires that, in the above limit,

we should also have
K2 =0,

4. The magnetic case u #0, v =0

When v = 0 (i.e. the field is “magnetic” according to Einstein’s convention which
interchanges the more common designation of the electric and magnetic field vectors),

the connection-determining equations are:

[ ~
71_2’;1 Y= -2F[301]“,

o Y N
eyl = —=s)=TiaM
(5-2) = Fl

a
a1—2—1a = 0= ax—'zg'l'a,
a

2
£(-5)-4
p a

b . N
_171 u= 1"[‘03]az+I‘?,3]?,
¢, b ~ =
u,— <?1 +4 -l;‘—) u= —F?ouﬁ'*'r?liﬂy’

) ~1 =3
= u = 3@ —Tonbs

together with the metric relation
2(pB—u?) = K2a?p*bc?.

We immediately cbtain (if oy, py, a; # 0)

B = kb*+mb*, y=kc*+nc* and a=ka’= kp?

(44)

“5)



939

0 that
) 2
yB—u® = — b*c%.
‘Therefore
. mb*b, - ncic,
t13y = e Fony = — ” (46)
Furthermore,
3 3
. c nc’c b mb’b
F[103]“=—1“— 1,3=—‘“" 17,
c u b u
or
bl _ cl
K? N K? '
b (kzn-— = +kmnb2) c (kzm— = +kmnc2)
Solution is possible only if
m=n=20, b proportional to c, “n
when the only nonzero skew component of the connection is
~ ciu  h cey
Moy =— =— ., 48
[03] co k 02 ( )

The field equations (which again correspond to the general relativistic empty field) give

immediately
r— ro r— ro r— ro 4
C = s b = bo > = s
Co Co do

constants a,, ¢, and b, having the dimensions of a length and where we can, if we wish
to, put r, = 0. In addition, the equation

2011 4, ¢ Ay a;

c a c¢ a a

must be satisfied, whence

o
I
I
Bl

so that the solution becomes

2

2 _ T .2 f9o 12 2 2 by 2
ds* = —dt*— { — (dr®+dz*)— — rdb*. 49
Co r Co
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Also

I:[lo3]=H\/r

corresponding to a classical field in the 6 direction, proportional to

ro32,

5. The electric case u=0, v #0

This time the equations which determine [,,, are:

21
"n—2—-y=0,

c

o ?
cc,|l—-—=]1=0,

a,
a1—2——-a = 0,

a

B x 2
bbl (‘b—z - 'I‘;‘z' = F[13]v,
al—2 'p_la = "21:[31210,
p
b ~
Bi—2 f B = 21’[213117:
b . .
71” = —I{aa+ s,
P ~ ~
o= F?xz]ﬁ'l‘rrlzs]“,
p
p1 by =~ >
vl_‘ (; + E—) v = F?IZJﬁ—r[zl3]d,.

so that either

o =ka®, y=ke*® (c; #O0)
or

¢, =0, o=ka?

(50)
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the second case not being significantly different from the first. Also
o = ka® = kp*>+np*, B = kb>+mb?,

and

KZ
af+v? = = p2b2, GD

Then, substituting from (50.4) and (50.5) for [;,; and I3, into the equation

. L P D .
Tl = ~ {28+ ?lv = 31'”*'1“[213]“,
we find
P b, K? 2
= , L=—p —k2
p(L—knp*)  b(L—-kmb?) k? (52)

Hence, omitting, for the moment, dimensional constants of proportionality and as before

n=m p=b (53)
when, incidentally, »
o = B.
The skew connection componentsbecome
3 3 2
=2 nb bl ~3 nb b1 1 bbl L—knb
= , = - d [lL,=—
[13] o [123 " an 23 = 7\ e (54)
The field equations are niow
€11 4y b,
— —— 42— =0,
¢y a b 53)
c b a, (c b n*b%p?
— 42— 2ty 2" o, (56)
c b a\c b v
byy ay by ¢ nb%b, 2
AL I s ) L—knb?) = 0,
b, a + b + c v? ( nb%) N

(the fourth equation being identical to (57)), where
2 = b2 E b4.
a + %

Conditions of compatibility again require

n=0 c=254
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when the solution becomes:

ds? = < 2 r\* 2 2 rt 2
2= g (L) @rr+dzt)- - do (58)
r ao bo

with
- ) 1
I'(23, proportional to -

Hence the radial component of the field is proportional to r=>.

6. Conclusions

None of the solutions obtained above appears to correspond to what is known about
«classical electromagnetism, except perhaps for very unusual and artificial distributions
of charges. This could be regarded as a serious setback for the Generalized Field Theory
were it not for two facts.

- First of these is the approximation found in Section 3. It shows that, after all, the
theory does allow the classical solution. Moreover, the ldtter occurs necessarily when the
‘background space-time is flat. This confirms again the conclusion, reached in Ref. [5],
that locally (i.e. where the Riemannian manifold is flat) the theories of electromagnetism
and gravitation bifurcate (except for the results recorded in Ref. [6], which suggest that
the correct theory of the electromagnetic field is, unlike Maxwell’s, nonlinear). Of course,
the result of Section 3 is not local. It is valid when the space-time tends globally to the Min-
kowski case, when also, as should be expected, there is no place for gravitation. It can
‘be easily verified that the corresponding static field carries no energy as calculated from
the standard energy-stress-momentum tensor.

Secondly, if we calculate the components of the Riemann-Christoffel curvature tensor
for the three manifolds found in the preceding Sections, we see that the corresponding
“‘electromagnetic” fields tend to zero much faster with the increasing distance from the
axis of symmetry. In other words, from a purely practical point of view, we should be able
to detect the curvature of the space-time long before the clectromagnetic effects could be
felt. Hence, although the results of this article are firm predictions of the theory, they are
not likely to be of much empirical value. The alternative perhaps would be to seek an
extremely strong field but then it may prove too difficult to maintain static, cylindrical
symmetry.

APPENDIX
The non-trivial equations (2) are:

hoo,o = 0,

0 ~
hOO,l -2 {01} hoo = 2F€°1]k30,



0 = 2f€02]k30,

0 = 2i‘[303]k30,

0 1 =
- {01} hOO_ {00} hll = r[301]k03’

0= f[szl]kos’

’ 0= f€31]k03’
0= f'[soz]koss
0= ff'o;]ksz +1-'?12]k03’
0= ~[3oz]k32’
0= I:?o:,]ksz'i'f[ssz]kos’
0= f?o:s]koas

0= f'?oukos"‘f[zoukzs,

~0 - ~
0 = Ijozkos +F[02]k23+r[3231k03»

0= F?oajkos +f[203]k23a

-
-
-

[ \*]
P N
[

[
[
-
b
b
I
o

fgw]kaz =0,

1 2 ~
- {22} hi = {12} haz = Tfizkszs

0= I"[313]k32,
0= f'?lO]kOS +f[2101k23’

0= f?lz]k03+f[2121k23,

3 1 - -
—_ {13} h33_ {33} hll = F?13]k03 +F[213]k23’

3
hzz,o = 2F[20]k32s

2 =
h22,1—2 {12} hzz = 21-'[321]k32,

943
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0= 2f?23]k32,
0= r[zolkoa +F[201k23 +F[03]k23>
0= F[zukoa +F[z;]k23fr[131k23>
0= F[231k23!

0= ’F[zs]kos‘*'f[zzs]kza’

hizo0 = 2I:E)so]koa +2f[2301k239

(3 ; )
h3s,1—2 {13} hyy = zr?u]kos +2F[231]k23,
0= 2f€23]k30+2f[223]k32,
0= r[m]hoo,
0= r[Ol]hll’

0= r[loz]hu"'rgzuhoo,

- {33} kos = Fiosjh11+1Ts11h00s
0= f'?oz]hom
0= f[zouhzz‘i'f&z]hoo,
0= frzoz]hzz’
0= f[zo;;]hzz‘*'f?sz]hoo’

kos.o = F[os]hoo,

0 3 ~ ~
kos,i— ({01} + {13}) ko3 = r[301]h33+F?13]’100,

0= f€0;]h33+1~"€23] 00»
0= F[oslhsss
0= F[lolhzz +f[102]h11,
0= F[IZ] 11

0= F[12]h22’

(3 . _
- {13} ki, = r[213]h22 +F[lsz] 115
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0 =2 jd ~
- {10} ko3 = r[310]h33+r[103]h33+F[lo3]hu,

1
0= F[IJ] 11>

2 N .
- {12} ki = F[SIZ] 33+F[1231h11,

0= f[sls]hss,

=3 -
ka3 = 2033+ Lio31h22,

2 3 -~
ka3, — ({12} + {13}) k3 = T?zn]h33+r[213]hzzs

0= f[zzslhzz,
0= f[szsjhas:
together with (of course)
f[lon’*'f[zoz]‘*‘f?ou = f?10]+f?12]+f?l3] = f€20]+f[121]+f€23}
= o+ T+ Th2 = 0.

Editorial note. This article was proofread by the editors only, not by the authors.

REFERENCES

[1] A. H. Klotz, G. K. Russell, Acta Phys. Pol. B2, 623 (1971).

2] A. H. Klotz, G. K. Russell, Acta Phys. Pol. B2, 637 (1971).

131 A. H. Klotz, G. K. Russell, 4cta Phys. Pol. B3, 413 (1972).

(41 L. J. Gregory, A. H. Klotz, Gen. Relativ. & Gravitation 13, 205 (1981).
(51 A. H. Klotz, Macrophysics and Geometry, Cambridge 1982.



