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The formalism of optimization of perturbative higher order corrections with respect
to the renormalization scales is extended to include the factorization scales. We consider
the most general case with massless as well as massive particles. As a test of the optimiza~
tion procedure, we apply our results to the recent O(az,) calculation of the ratio Re+e- = 6yt
(ete~ — hadrons)/a(e*e~ — ptp-), energy-energy correlation function and large P, direct
photon production in proton-antiproton inelastic collision. We conclude that the optimal
scales give always a bit larger result and in some cases, the difference with respect to the
physical scales is considerable.

PACS numbers: 11.10.Gh

1. Introduction

In general there are two types of scales (free parameters) determining the perturbative
higher order calculation: The renormalization and the factorization scales; e.g. in the
theory of quantum chromodynamics (QCD) and up to the next-to-leading order, one has
the scale u entering the running coupling «,(u) (related to the renormalization procedure)
and the scales M and y, entering the structure and/or the fragmentation function (related
to the factorization procedure).

During the past few years, phenomenologists were rather uninterested in the ambi-
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guities related to the choice of these scales and took just the so called physical scales based
on some naive physical arguments. However, this affects in general the result of the perturba-
tive calculation. Recently and because of various motivations, interest has been revived
to some extent. To bypass the choice problem of the scales and at least from the theoretical
point of view, several procedures (called optimization) have been developped and proposed.
The most appealing ones are the Principle of Minimal Sensitivity (PMS) [1, 2] and the
criterion of Fastest Apparent Convergence (FAC) [3].

To give some theoretical motivations to the proposed optimization procedures;
consider a physical quantity (e.g. the cross section for some physical processess) whose
solution is presented as a power series in the coupling. One can stop at any order of the
expansion. Then a feature of this approximation is that it depends on some parameters
(scales) which are totally absent from the exact result. Now, the following question arises:
given a calculation of the approximate solution to a particular order, how should one choose
these unphysical parameters? One has to note that any arbitrary choice will yield automati-
cally to an arbitrary result and no one can base his choice on just pure physical considera-
tions. This is a very serious problem. In what sense is a perturbation prediction if it depends
entirely on an arbitrary choice of the renormalization and/or the factorization scales
(RS and/or FS)? To have a partial answer, Stevenson attacked the problem from a pure
theoretical point of view [1]. He suggested that one has to take the approximate solutions
which are stationary under small variations of the unphysical parameters and it is unjustified
to assume from the begining that the same set of these free parameters must be used for
every physical quantity. Before going one step further and giving other arguments in favour
of Stevenson’s idea, let us first mention that one has two kinds of information about the
approximate calculation of any observable in question: (a) the first few terms of the approxi-
mation (perturbative expansion) in some RS and FS, (b) the full calculation (exact result)
is RS and/or FS independent. If the chosen approximate answer was in a region of strong
variations with respect to the unphysical parameters, it could not be acceptable because
it will give completly a different answer. Then, it is necessary to minimize the sensitivity
to the unphysical parameters. Moreover, by selecting the value at a stationary point, we
are in a sensc implementing a known property of the exact result (scheme independence).
This does not mean that the optimization procedure yields an answer which is the best
approximation to the exact result when it is compared to the experimental data. Hence,
one cannot claim by any measure that this procedure is the right answer. However, in the
absence of knowing the final answer, the optimization is the most plausible method of
reducing at least the prescription ambiguity.

In Section 2 we develop a general formalism to treat the optimization procedure of
physical quantities including structure andfor fragmentation functions. We consider
both the massless and massive particles case together with the non-singlet and singlet
parton distributions. In Section 3 we apply this formalism to various physical prccessess:
the recent O(e}) calculation of the ratio 6.+, = 0, (e*e” — hadrons)/o(ete — prp-),
energy-energy correlation function and large P, direct photon production in proton-
-antiproton inelastic reaction using the approximate corrections of the soft-gluon approach
[4, 5]. Finally, in Section 4 we discuss our results and draw our conclusions.
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2. Formalism

To a given order the scheme dependence of a perturbative calculation can be parametriz-
<d by a set of variables. If the calculation is repeated to one order higher, one new variable
must be added for each renormalized physical quantity (observable). These unphysical
variables parametrize essentially the freedom of finite renormalization (or factorization)
of the observables. It is worth to mention that the restriction to the perturbation theory
is very important. It expresses the fact that everything can be written as a power series in the
coupling independently of RS and/or FS.

Let us consider a physical quantity like the cross section for a QCD processess contain-
ing structure and/or fragmentation functions. To be more specific, we start with the non-
-singlet partons distributions and consider the case of massless particles. We remind the
reader that the cross section ¢ for a hadronic process of the form A+B — C+ D has the
following factorizable form [6-8]:

™(A+B > C+D) = Y qii @ qps ® 8(a+b - c+d) ® DS, @ Dpjas  (2.1)
a,b .
c,d
where A, B, C, and D are hadrons, iy and gy (DS, and Dy, respectively) are the non-
-singlet distribution (fragmentation) functions of the partons a and b (c and d, respectively)
inside the hadrons A and B (C and D, respectively), g(a+b — c+d) is the parton cross
section, ® denotes the convolution product and NS the non-singlet part. In the following

we restrict ourselves to the case with no partons fragmentation functions. Then Eq. (2.1)
becomes

a,NS - qNS ® qINS ® a. (2.2)

Note that we have omitted the sum and subscripts (g™ for g3 and g™ for gpy). Now
in the perturbative expansion with respect to the coupling and up to the k'™ order, one
<an write:

8® = g™ [6o+ad,+ ... +a“),3z}, 23)

where a = a/r (¢, is the QCD running coupling) is the coupling, a5, the Born term
(of order a™) and a™* %5, the K™ term (of order a™*¥), the parton distribution g™ (or
q"™) satisfy the renormalization group equation [2, 9]:

anS
M =9y 2.4
am ! (2.4)

where ™ is the non-singlet anomalous dimension with the following expansion [2, 9]:
?NS = Z ai+l,yiNS (2.5)
{=0
and M is the factorization point. Usually Eq. (2.4) is written in the form [9]:
"™

e YIB(a), (2:6)
a
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with f(a) is the well known Callan-Symanzik beta function [9, 10}

S |
B(a) = —6% = — Z a*tq =1, ¢, =¢ Q.7
i=0
where
T = b in (u/4), 2.8)
b = (33—2 N6, (2.9)
= (153—19 Np)/[2(33—2 N)]- (2.10)

N; is the number of flavours, ¢;’s and yI*’s (i > 1) are RS and FS dependent coefficients
and A is a QCD parameter [11]. Now, if one takes the Mellin transform of Eq. (2.2) he
gets:

& = 5", @11)

(“~” denotes the Mellin transforms of order n). The yyg (Mellin transform of y3°) is given
by the following expression [9]:
Tmo = 8[—2/[n(n+1)] +4 ;Zz 1/j3/3. (2.12)

To have more simplification in our calculation, we take the renormalization point u equals
the factorization point M. Then, at the K™ order, 4)° depends just on u, ¢, and

S @=1k ie

6" = 4O, ¢ VD@ P, D ¢) (= 1, k). (2.13)

Now, consider the perturbative approximations 6-°® and ¢/¥® in two very close
RS’s and RF’s. Since the exact result of the cross section can be written as:

&'I:IS — &§S(k)+0(au+k+l)
or

&:S — ~’I'NS(k)+O(aM+k+ l)
it follows that:

dohS® = Q(aM***Y), (2.14)

Having in mind that 7, ¢;’s and y}y’s are independent parameters, Eq. (2.14) implies that:

a&nNS(*) —

e = o@*™*Yy  (i=1,k. (2.15)
s Vis I'mi
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We call Eq. (2.15) the self-consistent condition. Hence, imposing (2.15) yields (Appendix A):

j-1

86, -~ —
Y= Z 6‘n;lH}w;l =1k, (2.16)
ot
1=0
. j=i J=i
a6, ~ : o R o
ac’j == Z Z a‘a;prH;‘—i-pi-l;d(l—l) — same terms(] —’}_1)(}' =i, k;i= 2, k)
l =0 o Q.17
and
~ j-i
36‘";_,- A . . N . P
e =2 OpaFj_if(G=0D) (=1ik; i=2k). (2.18)

=0

Here ;,,; ; denotes the Mellin transform of 6j in the expession (2.3). The F’s, B’s and H’s
are defined such that: :

k
1/8*%a) = - Y, a'7%F,, (2.19)
=0
k
0 . .
o _ E a*t""BY(i-1), BL=1 (2.20)
de;
=0
and
HY = =2y o i +(M+Dci_y—y. (2.21)

Now, combining Eqgs. (2.7) and (2.20) we end up with the following recurrence formula:
k
Bi= — ‘Z (i+j—21—-1)e,Bj_,[(i—j—1).
=1

Now, the following important question arises: Knowing a result of a perturbative expansion
at a given order in some RS and FS, how one can determine it at an other RS and FS?
To answer this delicate question, one has to determine some quantities which remain
invariant under any RS and FS. As we will see later, these scheme independent quantities
play an important role in the optimization procedure especially for the FAC method [10].
One can show easily that the following quantities are RS and RF independent (Appendix B):

5
nm= 3 Sh (2.22)
=1
where
i-2

~ l -
Sl =a,+ Y (M+p)8,Bibe,J(i—1-1),
p=0

=0
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=2 1 t-1

i-1 .
2= — ’;)HﬁV, 2 Y Y (M+0)BZie, HAV,|(i~1-1),

0t=0p=0

i i-2t=j

;ZF, _j-WG-D+2 Y Y. ¥ (M+t)c,_F,. — =Wl =1-1) (t—p)],

Jj=1 1=0 p=0

;t i

i i-11=-j

=2 Z Nlj-1=2 Y Y Y NHNF,_, /U-p),

J=11=0p=0

and
‘_

»

-

=2 Z‘ (M+t)ci—lBl::Nt—j—1/(i—'l—t)
ji=t1=01
i i-2 1 s—-1p—-
2y ¥yyy 2 (M +5)¢;_ BiZiNiF ,_;_ HY |[(i—1-1) (p~1)].

J=11=0s3=0p=0t=

The functions ¥,, W{ and HY are given respectively by the following expressions:
T -~
= j ] ";ld‘l-',
1]

Yoy
Wl] = g 5n,ld7)n,j’

and
'Yn,j *

N} j jdy dt&,,,

‘Once the values of 1y, 1, ..., 7, are known, one can determine exactly the form of o® as
a function of the RS and FS parameters p, ¢, ..., 6; Yni» Yoz - Vs (s€€ Section 3).
Now, to get the stationary (optimal) point, one has to apply the following condition:

a"NS(k)
=0 (i <k). (2.23)

. . NS NS
ou; ez ..oy €15 Pns1s +++s Vmsi)|optimal point

After a straightforward calculation, the condition (2.23) yields (Appendix C):

kK ko
Y Y ale HY i1 =0, (224
j=0i=j

k az ~

Y Y @eFiy s mei/(ktj—i—-m+1) =0

Jj=0 m=ay

o, = max(0,j+1—i), o, =min(k,k+j+1—i) (2.25)
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and
2k+i-1 £ p . NS -~ .
’Z;, p;a ;Z:Z' a2yng+1+1-i-p— M+ s14 1 =i-p)8n;;Bp-;l(i—1)
k k .
06»-;1'
- Ceriva-j 3o =0, (2.26)
1=0 j=i+1 )
where

o=mas(0,/+1—-0); f=min(k+I+1—1i,2k); o' = max(0,p—k) and B = min (k, p).
(2.26')

It is worth to mention that an alternative way to the method of the principle of Minimal
Sensitivity (PMS) is the Fastest Apparent Convergence procedure (FAC), which consists
of absorbing all the perturbative higher order corrections in the Born term (see Section 3).

If one goes one step further and consider the singlet case with massless particles, then
Egs. (2.16), (2.17) and (2.18) will be generalized respectively as follows:

i-1

08, o
% = E AR P 2.27)
1=0
~ =1 j—i
0wy _ _ YM*EIZi=i=tgliGi 1) — same terms (@ » a—1), j =ik
ac; - j=i=t-nl t x> a , J=1
=0 =0 (2.28)
and
o i-i
06, 2 : )
a*sq; = Zg;'gn (2.29)
mt =0
where
Yl'.;j = —[:);::b 6!1;!]%» +lcjo’:n;t
and

z5% = [AB, 9), 50:!]+Fj—i—-t/(j"’t)-

The matrix elements A(B, 5) are zero except the one corresponding to the ™ row and
8™ column which equals to one. The notation [,]; means anticommutator. The matrix
¥, of the singlet anomalous dimensions has the form:

Y O Nyt

Ma =10 1. Nu¥ (2.30)
Vo' Vmil Vmi
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and

~qq  sqq
o-n,l 0’";1 au,l
$ ~¢\q ~4q
ml an;l anl an,l . ’ (2'31)

A84 &8
an;l an,l an,l

Now, applying the optimization condition, one ends up with the following equations:

kK ok
ZO IZ YiET T =0, (2.32)
i=oi=j
k az 5
Zo a’Z,‘Zi: P =0, (2.33)
j=0t=a
2k+i—1 k kL
yMtik+i-itip 084, _
Yei:licpr1y B j/(l—1)+ e, Chse1+1 =0, (2.34)

t=i-1 I=t+1

where i=2,k; B,6,=1,3, o, =max(0,j—i+1); a, = min (k, k+j—i+1), and
a, B, «' and B’ are defined in Egs. (2.26).

This type of analysis can be extended easily for the massive particles case to include
the renormalized mass parameters. We remind the reader that the perturbation theory
is not analytic with respect to the mass m, so we cannot expand any physical quantity
{observable) in power series of m. Rather, we typically do the calculation order by order
in the coupling a. This leads to the renormalization group equation of the form:

-—=d.m, (2.35)
ot

where d,, is the mass anomalous dimension which has the following perturbative expansion:

=Y a'*ld,, (2.36)

i=1

The d,’s (i > 2) are new RS parameters independent of the previous ones. Hence,
implementing these new variables, the self-consistent conditions become:

%P 9 om

=t o or = O(aM**+h, (2.37)
WP  9o® om
2o T om 5 = 0@ @38
PRG
In__ O(aMtrY), (2.39)

ot
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and
6® om
T = 0(aMt*tY, 2.40
m 3d,, (a ) (2.40)

From the above equations, one can deduce that:

o~ Jj-1 -
a&”;. . 63’,,;, '
ar" = E (YIET_'" l l—d,,,;j_,_lm —ag) (2.41)
I=0
~ g—t a—i ~
00, Z z i 80,
_a_;_:_ - ( YM+Jl )ijl j+dm;¢-i—j-lm aml)
‘ ji=0 1=0
x BiJ(i—1) — same terms (@ - a—1), o« = ;,——; i= 2,_k (2.42)
36 —
Op;
a?,pﬁ = Z Zite (2.43)

t=

and
i-i .

Ky

06y 06,
= m
0d om

; ;] Fj-i—l/(j_l)’ (2'44)

where in the last two equations, j = ;,—I-c-: i= ﬁ and 8,0 = i,—3 Egs. (2.41), (2.42),
(2.43) and (2.44) can be seen as a generalization of Egs. (2.27), (2.28) and (2.29). In the
same manner, one can get the stationary point by applying the optimization condition
with respect to 7, ¢;’s, s and d,,’s. Doing this we end up with:

86,
E E ( YT T g am ") =0, (2.45)
om
2k+i—-1
E E E 004 B .
( g-l'-i-’1,c+x]+p11 l+dmj+k im am> p-j/(l_l)

j=a
60',.
- Z e yrgror = 0, (2.46)
j=0 I=j+1
. : .47

8,5
Z E ajZk+j+1;i;l =0,
j=0i=a,
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and

k a2

. a;,,. % ,
a’ [m a";’ +0n;l:| Fyirag-i-if(k+j+1=0) = p, (2.48)

Jj=0 I=a,
where
oy = max (0, j—i+1) and «, = min(k, k+j—i+1).

Similarly, Eqs. (2.45), (2.46), (2.47) and (2.48) are the generalization of Egs. (2.32), (2.33)
and (2.34). In this way, we have derived a general formalism for the application of the
optimization procedure to all cases without any restrictions. To be more specific and
as a test of the PMS and FAC methods we consider in Section 3, three phenomenologically
important cases.

3. Applications
3.1. The ratio R, = o, (ete~ > hadrons)/o(ete~ — ptp-)

Recently, a calculation of QCD corrections up to the O(x?) (3-loop order) for the
total cross section o,,(e*e~ — hadrons) has been completed [12], thus extending by one
order of o, the previous calculations (of 2-loop order) [13].

Now, consider the perturbation series expansion of the quantity [3, 14]:

R =[Rese-|(3201)]—1 = a(1+ad, +a%6, ...), (3.1.1)

where Q; is the flavour charge. Notice-that, in-this case there are no structure andfor
fragmentation functions. Now, up to the O(a?) and O(a?) respectively, Eq. (3.1.1) becomes:

RY = a(1+aé)), (3.1.2)
R® = a(1+aé,+a%,). (3.1.3)

We remind the reader, that R‘® is a function of two renormalization points u and c,.
However, R" depends just on one parameter . Now, by integrating Eq. (2.7) at the 2-loop
order we obtain [10, 15]:

@ = 1/a+cIn [ca/(1+ca)] (3.1.4)

and at the 3-loop order the result depends on the relative magnitude of the quantities
4c, and c2. For 4c, > ¢? (case of our interest) and with 4 = (4c, —c?)!/?:

™ = 1/a+cln(ca)—cln |1+ca+ca?|+(2c,—c?)/4
x {arctan [(2c,a +c)/4] —arctan [c/4]}. (3.1.5)

For the application of PMS, it is supposed that the coeficients ¢, and ¢, have been
given in a specific RS, e.g. the Minimal subtraction scheme (MS) [12], corresponding to the
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scales p and c,. Now, at the 2-loop order; applying the basic conditions (2.15) and (2.23)
lead to Eqs. (2.16) and (2.24) with M = k = 1 and give directly the following relation
between the optimal ¢ = ¢, and a° = a:

87 = —c/[2(1 +ca”)] (3.1.6)
(here ;,,;i’s are ¢;’s). Then the optimal physical qﬁantity R becomes:
RiMs = a*(1+ca’[2)/(1+ca”). (3.1.7)

At the 3-loop order, the conditions (2.15) and (2.23) yield Egs. (2.16), (2.17), (2.24) and
(2.26) with M = 1 and k = 2. After straightforward simplifications on gets the optimal
¢; = ¢* and ¢, = o} in terms of the optimal ¢, = ¢§ and a = d’, i.e.

8] = c3a°(2—ca’)/[2(3 +ca”)] (3.1.8)
and
3 = c3(=3+ca)/[33+c3a")] (3.1.9)
consequently, the value of the optimal physical quantity R® is:
RE) = a'(6—a“ccy/(3+c%a™))/6. (3.1.10)

As it is mentioned in Section 2; at any order of a perturbative expansion, one can construct
a set of RS and FS invariant quantities , given by Eq. (2.22). In the case of our interest
(no structure and fragmentation functions) one obtains:

ny=1—8;, MNy=2¢ N3=cy+8,—cd —b% (3.1.11,a,b,c)

Now, at the 2-loop order Egs. (3.1.11a), (3.1.4) and (3.1.6) imply the following equation
determining the optimal a:

1/a+cIn [ca/(1+ca)]+c/[2(1 +ca)] = bIn(u/A)—8,. (3.1.12)
Similarly, at the 3-loop order Egs. (3.1.11), (3.1.5), (3.1.8) and (3.1.9) lead to:
1/a°+¢In (ca®)—c In |1+ ca®+c3a”| +(2¢5 — 4°)/4°
x {arctan [(2c,a +c)/4"] —arctan [¢/4*]} — 6] = b In (u/A)—8, (3.1.13)
and
S +05—cts—8Y = cy+8,—c8,—87 (3.1.14)

here 4° stands for (4c}— c?)'/2. The quantities o, and ¢, are already given in Ref. [12]
(in the MS scheme): '

Y5 = 7.539—0.441N;,

&S = 133.647—8.778N;+0.176N;—0.840(Z 0;)?, (3.1.15)
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and in the MS scheme:
6™ — 1.986—0.115N,,
&M = 70.985—1.2N,+0.005N; — 0.840(Z 0p)>. (3.1.16)

Where N; and Q; are the number of flavours and the flavour number respectively. To this
purpose, we use the fact that in the MS and MS schemes [3, 12}:

¢, = (2857 —5033/9N; +325/27NE)/64b. 3.1.17)
Next, the FAC method is defined by requiring that:
6,=81=0, 8,=8;=0. (3.1.18)

At the 2-loop order, the quantity t = 7¥ is determined from the invariant (3.1.11a):
F = bIn (u/A)—-8, (3.1.19)

and the corresponding optimal value @ = a* is determined from Eq. (3.1.4). At the 3-loop
order, first we determine the optimal ¢, = ¢, using the invariant (3.1.11c):

cF =c,+8,—c8,—82 (3.1.20)

Then with ¢§ known, one determines the optimal @ = aF using Egs. (3.1.5) and (3.1.11a).
We remind that, for this method and either for the 2-loop or 3-loop case the value of the
optimal physical quantity R is:

R® =gaf, i=1,2 (3.1.21)

Now, numerically, using o} and }° we have carried the above optimizations for
# = /s = 34 GeV (/s is the e-e* c-m energy) and flavour number N; = 5. As a check
of our calculation, we have repeated the procedures using o> and ¢%°; of course, the
results are the same. From Ref. [12], we have used Aypg = 585 Mev (and Ay
= 0.377 Asgs 13D

Table I presents the resulting R, R® and [R® — RDYRW, together with the cor-
responding quantities in MS and MS. The same table presents also the running coupling
a at the 2 and 3 loop order for the FAC, PMS as well as MS and MS schemes.

It is remarkable that [R®® — RDYRW s largest for the FAC procedure; and is next-

TABLE 1
The physical quantities R(), R(?), the fractional difference (R®-R()/R(Y) and the running couplings
a; (2-loop order) and a;-(3loop order) in the considered schemes

N , R® R
RM x 102 R x 102 —RO a; x10? a; x10?
FAC 5.75 730 0.270 5.95 7.30
PMS 5.95 7.23 0.215 6.15 7.24
MS 5.36 6.13 0.144 433 4.34
MS 5.64 6.52 0.156 5.23 5.26
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R(2)
022 -

0.15

0.08

0.01
210

0.01 0.040

Fig. 1. The surface R(® = R®)(c;, a5) (Eq. (3.1.3) determined at p = Vs = 34 GeV

-to-largest for PMS. This can be taken to indicate that, regarding R..,-, these optimiza-
tion procedures lead to a slower convergence than the usual MS and MS schemes.

Anyway, as a byproduct of our work, we also present in Fig. 1 the quantity R®
as a function of ¢, and a. As anticipated [1], the optimal ¢, = ¢} and a = &* correspond
to a saddle point of the surface R® = R®(c,, a).

3.2. Energy-energy correlation function

As our second application, we consider the energy-energy correlation function which
has been proven to provide viable way of testing QCD and a powerful estimatior of the
strong running coupling «, [16]. The most recent calculation [17-20] gives results up to
the 2-loop order, which can be written in the simple form:

R(p, ) = a(u) [1+a(w)é,(x)], (3-2.1)

where k is the relative angle between the two jet spectrometers. Now, in the MS scheme
(1 = +/s; c.m. energy) and for 15° <« < 165° and the number of flavours N; = 4, ¢,(x)
has the following parametrized expression:

8,(x) = 5.454+2.8190"% +1.0130 "/ —0.466w—0.290™ "
+0.030*% +0.0170 /2, (3.2.2)
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with‘
@ = cot?*(x/2). (3.2.3»

Notice that the expression (3.2.1) has the same form as Eq. (3.1.2), thus applying optimiza~
tion, the PMS result is:

Rems = a"(1+ca*/2)/(1 + ca®), (3.2.4)

where o° is given by Eq. (3.1.12). For the FAC method, it is trivial from the invariant
(3.1.11a) that:

Ryac = a(Prac)s (3.2.5)

where
Hpac = \/5 exp (—8,(x)/b). (3.2.6»

For /s = 35 GeV and with both 4 = 0.2 and 0.4 GeV, Figs. 2 and 3 display the
optimal Rpys and R(x = /5) (u = /s = physical scale). They show that for A = 0.2 GeV,
the difference between the two quantities compared to the Born contribution lies between
8% and 59% depending on the relative angle k. For 4 = 0.4 GeV, the difference is even
larger; it is between 19% and 1009. This means that using the optimal scale is equivalent
to implementing a bit large correction with respect to the Born contribution, especially
at low k. These results suggest that one has to consider seriously this problem, notably
from the phenomenological and experimental point of view, in order to have a precise
measurements for the QCD running coupling «,. Finally, it is worth to mention that the
FAC method gives results similar to those of the PMS procedure (difference less than 3 %;).
This is understandable from the expression (3.2.4). If the coupling a is small Eq. (3.2.4)

0.12

010 -

0.06 -

R (arbitrary units)

0.04 |-

20 &0 60 - 100 120 140 160

Fig. 2. The quantity R(u, k) (Eq. (3.2.1)) in arbitrary units as a function of the relative angle . Solid (long-

-dashed) line is the PMS result at c.m. energy +/s = 35 GeV, and with 4 = 0.4 GeV (4 = 0.2 GeV).

Dashed-dotted (dotted) line is the result obtained with the physical scale 4 = /5 = 35 GeVat A = 0.4 GeV
(A = 0.2GeV)
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Fig. 3. The ratio [Rpm— R(u = 35 GeV))/Rpora for the energy-energy correlation function at c.m. energy
/5 = 35 GeV as a function of the relative angle x. Solid (dash-dotted) line represents the result
for A4 = 0.4 GeV (A = 0.2 GeV)

becomes
Rpns =~ a'[1—ca*l2+0(a*)] ~ a'. 327
This has the same form as that of the FAC method (see Eq. (3.2.5)).

3.3. Large-P, direct photon production

As our final application, we consider the difference ¢ of the inclusive cross sections
for pp — vX and pp — yX (non-singlet case) at large transverse momentum P;:

Eda(‘ X) Eda( X) 3.3.1)
— — —— — — =g 3.
e pp — 7 7 pp =y (3.3.1)

we study this difference at fixed c.m. energy /s and pseudo rapidity y. We remind the reader
that this reaction is dominated by the subprocess q,g, — Yg with g, with q, valence quarks
and antiquarks parton distribution. Here is a case with non-singlet structure functions
and massless particles. The Born and next-to-leading order contributions can be written
as (see Eq. (2.11)):

& = I, (3.3.2)
with
5»1 = a[én;0+agn;l]' (3-3-3)

As it is justified in our publications of Refs. [4, 21-23] ;,,; , can have as expression the
approximate soft-gluon corrections (n-term) [4, 24]:

&, = Cen’é,0, (3.3.4)
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where Cg = (N,—1)/N, in SU(N,) color -(N, is the number of colors). Now, applying
optimization, the expression (2.24) with M = k = 1 is reduced to

Gl 2705 — €]+ 28,3 [N — 1]+ 2a[yN —c] = 0. (3.3.5)

We have applied both conventions (PMS and FAC) using the soft-gluon approxima-
tion (3.3.4) at P, = 6 GeV, c.m. energy /s = 63 GeV and pseudo rapidity y = 0. Also,
we have used the quark valence distribution of Duke-Owens set 1 [25] which has
A = 0.2 GeV and number of flavours N; = 4. The FAC (PMS) solution is shown with
a circle (a triangle, respectively). Notice that our optimal cross sections (FAC an PMS)
differ very little from each other (the difference is less than 3 %,). Moreover, in spite of wide
changes in the scales u and M, the cross sections o(M, p) are relatively stable (see Fig. 4).
In fact, the largest difference is less than 25%,.

Finally, it is worth to mention that strictly speaking, one has to use structure functions
calculated up to the first order in the anomalous dimensions y,,Nsl However, and since there
is no available parametrization for such structure functions, we restrict ourselves to the
ones of Duke-Owens [25] which were calculated just to the zeroth order in the anomalous
dimensions y}y.

0.1

0.10

e p2iGev?)
>
a 008 36
»
¥
0.06 36
360

0.04

18 36 7.2 ® 36
M2 (Gev2)

Fig. 4. Contour lines for E do(pp — yX)/d*p—Edo(pp — vX)/d?p = ¢ at 4/s = 63 GeV and pseudo-
-rapidity y = 0, as functions of M2 and u? or & (u)/m at Py = 6 GeV in units of 10-35 cm?/GeV?. The circle
(triangle) denotes FAC (PMS) result

4. Conclusion

We have seen through the three previous applications and in all cases that the optimal
scales give results larger than those of the so called physical scales. This is obvious, since,
from our work of Ref. [4], and roughly speaking, the optimal scale amounts to exponentiat-
ing the corrections at the physical scale {true at the 1-loop order). Moreover, the stability
of the results and the convergence of the perturbative expansion is a process dependent.
In fact, in the energy-energy correlation function case the optimal scales depend on the
relative angle k, especially at smaller values where the two jets events dominate. As we have
seen, the difference can be 1009, with respect to the Born contribution with a K-factor
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[(Born + corrections)/Born] of two. However, in the large P, direct photon case and
despite of the large interval of scales variations (one order of magnitude), the cross sections
are stable (less than 209 difference). Similarly, in the ete~ case (ratio R,+.-) and except
the convergence problem of the perturbative expansion, the stability is fairly goed.

We are indebted to Dr M. Dhina for useful discussions on the energy-cnergy correla-
tion function. One of us (N.M.) would like to thank professor A. P. Contogouris for
fruitfull discussions and encouragement during the time I spent at Mc. Gill university.

APPENDIX A
Let us consider the quantity (see Eq. (2.11)):
& = IG5,
which can be written as
5 = <08,

where {O) represents the long range contribution. Now, using the fact that:

k
Y M+1a
6n==2:a 6mb
=0

aa m+2
"a-;— = a Cps
m=0
and
k
<0 .
_<_.Z = 2¢0) a'“y,,“j,
ot : l,
i=0

and applying the self consistent condition (2.15) with respect to 7 i.e.:

_a_éf = O(aM'”‘“).

ot

We end up with the following expression:

k k

. . i
' 5 86,,
<0> 2 Z a' "M [y — (M +1)e]+<0) Z aM*! a_:” = O(a" Y,
1=0

i=0 I=0

After straigthforward simplifications we obtain:

i1
%mi _\ "3 NS _
o wil = 2Vmj—1-1+M+1)e; 4] j=1,k
=0

which is exactly Eq. (2.16).

(A.D)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7

(A.8)
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Now, applying the self-consistent condition with respect to ¢,

do

99 o@"y,
7, (a )
or
g L = O(a™**+?)
ac; ’

where f® is the k™ order Callan-Symanzik beta function. Since

k k

0> m .
B2 -0y Yy > a1
) m=0 j=0
and
k
7 .
% . 5 a1 Bl —1).
dc,
i=0
We get
k k k

Z aj+m+i+M+l+25n;jB,‘"[:y:? —(M +1)c,/(i—1)]

j=0m=01=0

k k ~
aa .l
_ am+M+l+2cm o _ O(aM+k+3).
dc;
I=0 m=0

After some simplifications and noticing that

~

=0 for 1<
dc;

We obtain

1—il-i

Z Z 5n;jBfu[2ys;!—i—j—m-~(M+j)cl—i—j—m]/(i—'1)

=0 m=0

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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¥q. (A.15) yields immediately the expression
bzt
L GnBul2p i = (M4 0e;- 1) (=1)

26, _ _
= —") _ same terms (-oj—1, j=ik i=2k (A.16)
€

Then, we derive again Eq. (2.17).
Finally, the self-consistent condition with respect to 75y i.e.:

Z:é}: = 0(@" (A.17)
and the relation
x
%%2 = —-X0) Z a'tFf(1+i) (A.18)
=0
together with Eq. (A.3), give:
- k
aa:rq; =2 Z SuaFjinil=D)  j=ik, i=2k (A.19)

=0

We remind the reader that the B’s and F’s are defined in Egs. (2.19)-(2.21). Notice that
Eq. (A.19) has the same form as Eq. (2.18).

APPENDIX B

By construction and using Eqs. (2.16)—(2.18) one can see immediately that the invariant
n; has to have the following form:

n; = S,‘ +fi (B.1)
with
. =2 1 -
Si=6+Y % (M +m)3,BiZcif(i—1-1), (B.2)
I=0m=90

where f; is a function of ¢ and y:'g’s G= 1, k). By taking the partial derivative of (B.1)
with respect to t and using Eq. (2.16) we obtain:

fi=S}+L, (B.3)
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with
i-2 m-1

= - Z[ 27;.,- i1+ M +De;-y- 1].[3 adt— z Z z (M+m)

I=0 m=0 p=0
XB Ci- l[ 2‘)’nm -p- 1+(M+p)cm -p- l]j&npdtl(l—l 1) (B4)

L, is a function of just the anomalous dimensions y,’s (j = 1, k). Now, taking the total
derivative of both (B.1) and (B.3) and using Eq. (2.18), we end up with:

L; = S} +8}+S; +const, (B.5)
where
s i i-j s NS i-2m-j
Si =2 Z l j—1 5 nldYn,j/(l 1)+2 Z Z Z (M+m)ci-—l
ji=11=0 0 j=11=0p=0
n: jNS -
m i-p g 6‘ ’Ynjl[(l_l—l) (m p)] (B6)’
i yn NSt i i=1 1=j ym; NSt
St =2 Z J j ngi—j— 1dy,,,1d‘t+2 Z Z Z 5 d'}’l:;i'dr
j=t 0 o j=11=0p=0 0 0
X [2??3-1— —(M+De; - 1]Fz—j—p5n;p/(l"l’), (B.7
and

i-2 Yn;.iNs

- 1 T . i-2
Z Z (M +m)c;_,Bi-,, j {6,,,,, jo1drmdT+2 Z _20

)

x z 'Z }: (M +m)c,_Bi=%, j jdyﬁsdrF,_,._,é,,;,

m=0 p=0t=0

x (29 i =~ (M + p)ep—p—1][(i—1-1) (p—1D)]. (B.8)

APPENDIX C

Using Eq. (A.8) which is a result of the self-consistent condition (A.6), we obtain

from Eq. (A.7):
aaNS
E E m+M+l+l&n l[zyn sm (M+l)cl] = —6% . (Cl)

Now, by setting m+1! = j+k and applying the optimizaticn condition (2.23) with respect
to 7 we get:

Z Z a’ nl[z'}’n,;+k =M +Dejip-] =0 (C2

j=01=

which is similar to Eq. (2.24).
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For the optimization with respect to yh; and after using Eq. (A.18) and the optimiza-

tion condition (2.23), we obtain

k az

> X aj‘;n;ka+j—i—m+1/(k+j‘m+1) =0,
J=0 m=ay
o, = max (0, j+1—10), «, =min(k, k+j+1-10) (C.3)

again Eq. (C.3) is similar to Eq. (2.25). Finally, by imposing the relation (A.15) and applying
the condition of optimization with respect to c;, we end up with the following expression:

2k+i-1 g P o NS .
Z Z Z a[Z'Yn;k+t+1-i-p"(M+j)Ck+t+1—i—p]

I1=0 p=aj=a

k k
-~ 28,
X Gy, By— jl(i—1)— E Corirajots (C4)
1=0 j=1+1 !

where a, B, o' and B’ are given in Eq. (2.26).

Editorial note. This article was proofread by the editors only, not by the authors.
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