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A four-quark model motivated by determinant 't Hooft interaction for the case of
SUQ); ® SU(2); symmetry is investigated. Using the method of functional integration,
meson fields are introduced and the perturbation theory based on expansion in loops is
considered. It is shown that a dynamic symmetry breaking takes place in the model; the
role of Goldstone bosons is played by w-mesons. A constituent quark mass dependence on
the quark condensate and a dimensional coupling constant (associated with the instanton
density) dependence on the momentum-cutoff, whose inverse value gives the instanton size,
have been obtained. At the momentum-cutoff of 4 = 1 GeV and current mass of quarks
mo = 5 MeV experimental values of the m-mesons mass, quark condensate and dynamic
quark mass have been reproduced. Completely effective action describing the interaction
of .mesons has been derived within the framework of the proposed model.

PACS numbers: 11.15.Tk

1, Introduction

One of the urgent problems of today is the investigation of nonperturbative effects
in quantum chromodynamics (QCD). Among them are chiral symmetry breaking, confine-
ment of quarks, etc. This drea is difficult to study because of the impossibility of applying
the perturbation theory using expansion in coupling constant a,. The understanding of
these effects would provide the key to the calculation of the low-energy characteristics of
hadrons-mass spectra, decay width, etc. This area of soft interactions of quarks and gluons
is characterized by a complex structure of QCD vacuum and its nonperturbative fluctuations
[1]. Long-wavelength fluctuations provide quark capture and are not considered in the
present paper. This type of fluctuations can be taken into account, for example by using
the bag model [2]. We shall consider only small-size fluctuations caused by instantons [3].
Thus we shall discuss the intermediate region between the asymptotic freedom and confine-
ment of quarks. The model of vacuum as an instantonic liquid has been developed in [4, 9].

In [5] (see also [6]) it is shown that instantons generate a quark interaction of the
form

Adet y(1+7y5)y;+hec. m
(985)
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where v, is the ith-flavor quark field, h.c. is a hermitian conjugate, A is the constant which
can be associated with the instanton density {7].

In [8-15] the role of interactions of the form of (1) for the low-energy physics of mesons
was noted. In particular, it was shown [5, 8] that if we takc into acccunt the gluon field
fluctuations contributing to (1), the U(1)-problem beccmes sclvable, spontaneous breaking
of chiral invariance cccurs [8-11]. All these pcints to the importance of further investiga-
tions of the results obtained by studying the interactions of (1).

Considering only the u, d-quarks in Eq. (1) and taking into acccunt the free Lagran-
gian, we arrive at a Lagrangian with a four-quark interacticn [13, 6]

_ i _ _ _
&L = —yp(,0,+mo)y+ 5[(W)’+(w5v)’—(wf"w)z—(wvsr"w)z]- 2y

Here t° are the Pauli matriccs, my = diag (mg,, mq3); Moq, Mo, are current quark masses.
In (2) summation over color degrees cf freedom of quarks n = 1,2,..., N, has been
performed. We shall consider equal bare masses cf quarks my, = my, = m,. Then Lagran-
gian (2) is invariant under transfcrmations cf the group SU(2); ® SU(2). Note that
(2), even in the case of m, = 0, is not invariant under U (1)-chiral transfcrmaticns, i.e. it
brakes the U (1)-symmetry. In this respect it differs frcm the Lagrangian (2); it alsc differs
from the previously considered chiral-symmetric Lagrangians <f [17-19] proposed to
describe mesons at low energics.

The dim of the present paper is to investigate the mcdel tascd cn pestulated Lagran-
gian (2) motivated by the presence cf instantcns. Secticn 2 considers the perturbation
theory as a mean-field approximation and the pcssibility ¢f the aprearance ¢f ccndensates.
In Section 3 the quadratic part cf the effective acticn is calculated and the mass spectra
of mesons are found. In Secticn 4 the Goldberger-Treiman relaticn is derived, the depend-
ence of the quark dynamic mass on the momentum-cutoff is given and the value of the
quark condensate is calculated. In Secticn 5 the complete effcctive acticn is calculated.
In Conclusion the status of the mcdel is discussed.

2. Perturbation theory

Let us consider the generating functional for the Green functions corresponding to the
Lagrangian (2)

Z[#, 1] = No | Dy exp [i § d*x(L +yn+ijy)] €)]

where 1, # are external sources. Redefining the normalization factor N,, multiplying by the
constant ‘
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we write (3) as

Z[ﬁ’ "] =N f 9¢9w9¢0@$0@¢a9$a €Xp {l ‘[ d4x [_;P_('y”au + my— g0¢0

, A
—igoVsPo— 2ot —igoYsT' Py — ’-‘2— (P3—Po—2 +PD)+ym+ r‘np]} . 4)

Here A = g2/u?, g is a dimensionless coupling constant and a constant y is mass-dimension-
al. Thus, meson fields representing coupled statcs of quark-antiquark pairs have been
introduced into (4) (see, for example, [17-21]). The fields ¢, will be identified with the
triplet of pseudoscalar m,-mesons.

Calculations will use the momentum-cutoff A which specifies the region of nonlocal
interaction of quarks. This region is determined by the instanton size ¢ = 1/4 [5, 8] and
is responsible for the quark pairing.

We can integrate Eq. (4) over the quark fields §, v and obtain

Z[f,n} =N j' D4 det (—y,0,—mo+goPal o)

2
X exp {i' fd“xd‘y [-— % $840(x — y) +7i(X)Se(x, y)n(y)]} . ®)
where
b4 = (¢os J’o: Das &a)’ Doy = 94509‘509‘%9‘5”
r,= (I(Z)s iys, Ta, inTa), &4 = (1’ -1, -1, 1)-

In Eq. (5) summation over repeated indexes is understood. The Green function of quarks
in the external meson fields S¢(x, y) obeys the equation

(705 +mo—goPul )S(X, y) = 8(x—y). 6

In modes with four-fermion scalar-scalar interaction, the symmetric vacuum is not
stable [16-21]. More advantageous from the point of view of energy is the rearrangement
of the physical vacuum and the appearance of the condensate, which leads to the dynamical
breaking of the initial SU(2); ® SU(2)symmetry. In order to take into account and to
determine the condensate the fields should be “‘shifted” by the constants. Using admissible
gauging for the group SU(2); ® SU(2),, it is enough to assume the following conditions

Copd #0,  (ypsyd # 0, (ypr’pd £ 0, (yystp) # 0.
As a result, it is necessary to make the substitution in (5), (6)
do = do+00, &3 =3+03, S, =i, Po = $o+60,

¢ = $3+8:4: = &, Q)
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where i = 1,2; 64,03, 6y, 63 are coordinate-independent constants. These  constants
determine the stationary point of the fields for the generating functional (5) and are x-inde-
pendent by virtue of the Lorentz-invariance.

Below, the values of the constants o4, 63, 6o, 63 Will be determined from the minimum
of the effective potential which determines the vacuum energy density.

To formulate the perturbation theory, let us use the saddle-point method. The fields
éa (7) represent quantum excitations over vacuum and are assumed small.

Using the equality det Q = exp trIn Q, let us rewrite Eq. (5) taking into account (7)

Z[7,n] = N § D, exp {i[Ser+ [ d*xd*yii(x)Se(x, y(»)]},
2
Serr = — %Jd4x[(¢6+00)2—($8+50)2— 2= —(ds+0a5)?

+ @2+ @2+ (P57 +63)°]—itrIn (—v,8,—m+imys+godal ). ®

Here the following notation has been introduced m = diag (m,, m,), m; = my—go(6o+03),
my = mo—go(do—0as), m = diag(m,, m,), my = go(Fo+83), M, = go(Fo—&s). Let us
recall that we assume that the current masses of u, d quarks are equal, i.e., my, = mg, = m,.
The operator, tr in (8) includes tracing in matrix and space-time variables.

Let us use the equality trin (—7,0,—m+imys+gopal 4) = trln (—y,0,~—m-+imys)
+trIn (1 —goSoc(x, »)P.I 4), where the “free’” Green functicn of quarks So(x, y) satisfies
the equation

(Yuap+ m-— i';l)’s)sm(xa y) = 8(x—y). &)

Taking this into account, in expansion of the logarithm in (8) in small fluctuations of ¢, we
obtain the expression for the effective action

2
H ’ T ~ ’ ' ’
Seee = — 5 Jd“x [(¢o+°'o)2—(¢o+°'o)2" =2 —(p3+03)°

+ PP+ P4 (P3+65)*—itr In (—y,0,—m-+imys)

<«

+ 2 % tr (goSocdul’ A)”] s (10

n=1

where

tr (goSordal )" = tr [go j d4x1 d4x,,Sof(x,,—x1)¢:h(x1)FAl

% So(x4 —x2)¢;2(x2)F 4 - Sot(Xn-1 — %)@, (x)T 4,]- 1
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3. Mass spectrum

The values of the vacuum fields o4, 03, 69, 63 are obtained from the requirement
of the absence of terms linear in fields ¢ in the effective action (10). These terms correspond
to the “tadpole”-type diagram given in Fig. 1. The stationary conditions for the action
Se¢ are written as

7 = — o484 +itr (gl 4Sor) = 0. (12)
o¢4

$4'=0

Fig. 1. The “tadpole”-type diagram participating in the condensate formation

To calculate the trace entering into (12), it is necessary to find the solution of equation
(9). Passing into the momentum space, we find

—iﬁ+m1+i';ll')r'5 0
2 2
_ P +Mj
p*+M;

Here p = p,y,, Mi = m>+m}, M3 = m}+mj. The poles of the Green functions (13)
determine the constituent (dynamic) quark masses M, M,. Thus, even at equal bare masses
my of u, d-quarks, as a result of vacuum reconstructicn, the quarks acquire different
masses M, # M,. The components containing the matrix y5 in (13) violate CP-parity.
It should be remembered that the f-term in the QCD Lagrangian caused by the presence
of instantons gives a complicated topological vacuum structure and breakes PC-parity
(see for example [22]). However, this breaking is dssumed very small.

Substituting (13) into (12) and calculating the traces, we find the self-consistency-
condition.

1go0o = myI +myl,,  pPgeoy = —myli+myl,,
1gobo = md +myly,  pPgeds = —myl +m,l,,
. 2 4 2, 42
igoN, (d°pb(p* +4%)
I; = 04 3 3 (=12). 14
4z pr+Mj
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It is convenient to rewrite (14) as
ﬂz(mo—"h) =2myl,, pX(mo—my) =2m,l,, (15a)
[lzf‘;ll = 2r;l212, ﬂzr;lz = 2'7!1[1. (15b)

‘These equations are gap equations [16]. Note that with cutoff regularization used here,
equations (15a) have solutions: m, > my, m, > m, and equations (15b) have solutions
provided that the constants m, and m, have different signs.

Let us now show that equations (15) follow from the condition of the effective potential
minimum. Combining the constant terms in (10), we write

St = — —jd‘x(ao—ao 03— —1tr In (—y,0,—m+imys) (16)

Taking into account that for the constant fields there is a relationship [23] Sgr™
= — [ d*xV, we find from (16) the effective potential

2

ﬂ ~ -~ g NC
Veet = ?[(ml—mo) (my—mg)—mym,]+ 2

Jd‘*pln (P*+ M) (P*+M2). (17)

Equation (15) is obtained from the condition of the potential minimum (17):

aVeff . aVeff _ aVet‘t‘ _ aVeff =0
om, om, Om, O0m,

Here we shall be interested in the case where there is no dynamic breaking of the CP-parity,
i.e. where m;, = m, = 0 (§, = &, = 0). Besides, we shall neglect the mass splitting of
the u,d-quarks. For this purpose we assume m, = m, = m or, which is the same, 6, = 0,
As a result of the above limitation, only one of the two equations (15) *“‘survives”, which,
after the calculation of the integral I, = I, = I, takes the form

~ IN, A2
o ('""; m) gz"uz [ m? In (7+1) —A’]. (18)

Equation (18) has nontrivial solutions non-analytical with respect to the constant A = g3/u?
provided that a = 2n2/AA%N, < 1 [16]. From (18) the dynamic mass of the quarks m is
determined when the values of the constant 4 and of the momentum-cutoff A are specified
{provided that « < 1).

Expansion of (10) in the number # > 1 of external legs is represented by graphs in
Fig. 2. To obtain the mass spectrum of mesons, it is necessary to calculate the ficld
$;-quadratic term in (10) which determines the propagation of mesons. From (10) we find

SH=—-= fd4x¢4 8A+ - tl’ (80Sotdal 4)*

= —1 [ d**d*ypL(x)4 15 (%, y)ba(»). (19)
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Fig. 2. Quark loops contributing to the complete effective action

The inverse propagator 473 can be written in momentum space as
-1 2 . 2 d4k
A,45(p) = u'e,p045—igo tr (—2;')1 Soe(K) (Sos(k—p) . (20)

Calculating (20) and taking into account (13), (18) (at m, = m, = 0, my = m, = m)
we find

- I -
450(0) = — ——— +(p* +4m") (25" =V (gD),
0
A74p) = 2 2T L gz - K(gh),
0o m-—mg )
. _ _q - 2m—-m _ .
ATHD) = A320) = 455(0) = 2 o (g ) (25~ (e
. - 0 -
AZND) = AT20) = Ap) = — 22 4 pz5 ~J(g) 1)
17 (P) = 453(P) = A53(P) = m—ing P4, 80))»

1

2N 2 _ .
where J(g2) = g:nz" J dxIn [1+ —"I-:fz—x(l—x)] ,Z3t s
o

ig2N,_ (d*pO(p*+A%) dI  gN, A% A% '
z;t = - B pi(pt:2)=__2=g02¢ In{—z+1)= o | @
An (p*+m? dm 4z m A+m .

Let us redefine the fields ¢,Z5 /> = ¢, and the constant

2 2 2 -1
=32 = (L 41) - | -
Nc ml A2+m2 4

It follows from this formula that the expansion in g2/4n? in (10) corresponds to the /N,
expansion provided that [in (4%/m?+1)—A%/(A*+m?)]* < 1. For the values of the
parameters A, m used below this ¢ondition will be fulfilled. 1t follows from (21) that the
n-mesons are Goldstone bosons, since, if the bare mass of the quarks m, = 0, their masses
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tend to zero (see also [17, 13]). In this case, the scalar meson mass m, = 2m is in agreement
with [16, 17].

To calculate the masses from (21), it is necessary to specify the momentum-cutoff
and calculate the consistent mass of the quarks m.

4. Determination of A, m, {Fy)

To fix A and calculate m we find the relation of these quantities to the constant F, [17].
Let us construct an axial current corresponding to the SUL(2) transformations of the

Lagrangian (2)
R —r _ . nt
v = exp ("P?s 3 H), ¢ = {Ppexp (um 0 } (22)

where 7 is the unit vector, i.e., n? = 1.
Transformations of the quark fields (22) generate infinitely small transformations
of the meson fields

Go+00 = do+ao+nd, o > Fo—on.d,,
‘5« hnd &a - ?na(d’o + 0'0)’ ¢a i ¢a + ¢na$0‘ (23 )

Let us take into account that by renormalization of the fields o, = (m—m)/g,Z/?
= (m,—m)/g. Now, using the Gell-Mann-Levy method [24], we find the expression for
the axial current

_ 66Leff _
Au = aauw(x) =, (¢aan$0_$oau¢a
+¢Oan$a_$aau¢0 + (mog— m) * au&a) . (24)

If we use (24) to describe the decay n* — p¥v (see [17]), it is necessary to identify (see
also [13, 17, 25)

=F, (25)

where the pion decay constant F, = 93 MeV. Relation (25) is the Goldberger-Treiman
identity. Substituting into (25) the value of g, we arrive at a transcendent equation relating
F, and the momentum-cutoff A:

- F, 2_7N,, n A2 1 A2 "
m-my) 4nt] \m?® ) Ar+m| (26)
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Fig. 3 shows the graphical dependence of the quark dynamic mass m on the momentum-
—cutoff at N, = 3, my, = 0 (see also [13]). Choosing the value of A = 1 GeV, we obtain
the value m = 241 MeV. From (18) the value of the constant 1 can be found from

N A* 2F2m? !
T 2n¥( A2+ mP) (m—mg)?

@n

The value of the constant A vs the momentum-cutoff is graphically represented in Fig. 4.
At A = 1 GeV we obtain the value 4 = 7.9 (GeV)-2. Finally, we calculate the value of
the quark condensate. We have

(Pp) = CTud+<Ady = i tr Soelx, %)

iN;m (d*pb(p*+ 4% Nm A?
=_° =— | A2-m*In(= +1}]. 28
27t f p2+m2 27 I: " n<m2 + )] (28)

Fig. 5 shows the condensate vs the momentum-cutoff. Taking the value of 4 = 1 GeV,
we obtain a reasonable value

uu) = {(dd) = (—248 MeV)>. 9

It should be recalled that phenomenology yields the value (uud = (dd) = —(240-
—250 MeV)3.

m (Mev)
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230 (-
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170 -

1 L L [l 1 1 '} ] i 1 1

LY I | 1
708 09 10 11 12 13 14 15 16 1.7 18 19 20 AlGev)

Fig. 3. The constituent (dynamic) mass of quarks vs the momentum-cutoff at m, = 0
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Fig. 4. The plot of the dependence of the coupling constant entering into the original Lagrangian on.the
momentum-cutoff (my = 0)
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We can easily see from (21), (25) and (28) that the following relation takes place
(see also [13]):

Fim} & —mo(Py), (30)

which can also be obtained in terms of current algebra [26, 27]. We performed a numerical
calculation without approximations given by the equations

AZXp) =0, A5i(p) =0 31)

at A =1GeV, m = 0.24 GeV, my, = 5 MeV.
We obtain ’

my = 140 MeV, m, = 500 MeV. (32)
The computation has shown that there are no solutions of equations
@ =0, A (p)=0 (33)
neither at p? > 0 nor at p*> < 0.

Thus the propagators 433, 4,, do not give particle propagation.

5. Complete -effective action

Let us calculate the components in the sum (10) which are graphically represented
in Fig. 2. Note that after the fields redistribution the expansion parameter of (10) is the
quantity g*/4n?~ 1/6 (at A = 1 GeV). Therefore, the expansion in constant g?/4n® of
(10) is justified. Let us count the components of (10) whith n =3 and n=4. At n > 4
the quark loops will give expressions convergent at A — co which are infinitely small.
For three- and four-point functions we have the expressions

d4
T ypclkss ky) = itr { f&;;‘]z [Sof(p+k1—k )T 4Soe(P) pSoe(p+ky)
+Sos(p—k)I" BSOf(p)SOf(p +ky—k)JI c} > (34

- d*p
T ypep(kys kg k3) = itr { J‘W {Soe(PIT 4Soe(p+k2) [TcSor(p+kz—k3) 'y

X Sof(P—k ) 4+ T cSoe(p+ky — k)T (Soe(p+ki+Kky—k3) g
+TpSof(p—ky+ k) cSof(p— k) 4+ T (Sof(p+ky + k)T Soe(p+ky+k;— k)T

+I 4Soe(p+ky+ k)T pSos(p+k3) ¢+ TpSod(p+ k3 — ki) 4Soe(p + k) ]} (35)
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Substituting (13) into (34), (35)at m, = m, = 0,m; = m, = mand calculating the integral
to an accuracy of O(g?), we find

i SD4S@ = j d*x {zgm[¢3+s¢o¢:+¢o<¢s+$z>

2
#28o(BuB]— S [95+(9D +68367+ B-+(B1 + 6534

FOGRFE+ B2 + 628D + 24dobol b + 2078 +4<¢,<5,,>21} . 36)

The effective action of the interacting meson fields of (36) can be rewritten in a more com-
pact form by introducing the matrices

¢ = polyt s & = Polny+Pat’, €
where I, is a unit 2x2 matrix. Taking into account the relations
tr ¢ = 2(do+3¢0¢?),
tr ¢§” = 2[do($5+2) +26odabal,
tr ¢* = 2[$g+(2)* + 665021,
tr ¢*, 2 = 25 +92) (B3 +2) +8obo(Paba)s
trd ¢d = 265(¢a+§0)+ 26507 +8¢obo(@uba) +4(bub.) ~26.;

formula (36) will be written as
: ' 2
or = fd“x {gm tr [p(9* + 6] - % tr [¢‘+$‘+4¢2$2+2(¢$)2]} : (383)

Expressions (36), (38) can be used to find the decay widths and cross-sections of mesons
scattering. Formula (38) is obviously invariant under transformations of the group
UQ); ® U(Q2).

6. Discussion

We have considered a model based on the determinant °t Hooft interaction in the
case of SU(2); ® SU(2), symmetry. It describes well the n-mesons. For Lagrangian (2)
the complete effective action has been found. For correct quantitative estimation of the
mass spectra of scalar and pseudoscalar mesons, we should, perhaps, not only generalize
the model to the case of SU(3) ® SUQ3)-symmetry (see [13-15]), but also take into
account the contribution of the gluon, four-quark states [28] and, possibly, of the longwave
fluctuations associated with the confinement.

The autor would like to thank M. I. Levchuk for help in the calculations. I have
much benefited from discussions with D. I. Diakonov and V. Yu. Petrov.

Editorial note. This article was proofread by the editors only, not by the authors.
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