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1. Introduction

The theory of triangulated random surfaces was suggested as a regularized theory
of the bosonic string some years ago [1, 2, 3]. It is somewhat remarkable that the regularized
theory can be solved analytically in a number of (unphysical) dimensions, namely

= —2,0,1. The critical exponent y for the susceptibility can be calculated in these
dimensions. Further critical exponents can be calculated for d = 0 by coupling the 2D-
-gravity part of the string to spin fields [4].

A problem with the suggested regularization of the string and 2D-gravity is that it has_
no naive weak coupling limit where it agrees with the formally defined continuum theory.
In this respect the theory is different from e.g. lattice gauge theory, which has a weak
coupling limit where it can be identified with the continuum theory. However, recently
Knizhnik et al. have been able by analytical means to solve the minimal conformal theories
coupled to 2D-gravity. Agreement with the former calculations in the triangulated random
surface model was observed. This gives confidence to both classes of calculations, and in
particular it showed that the triangulated randoms urface model provided a good regulari-
zation of the bosonic string and 2D-gravity.

An interesting problem with the calculation of Knizhnik et al. is the breakdown when
the central charge ¢ of the conformal theory is larger than one. In the application of the
theory to bosonic strings the central charge is the dimension d of space-time in which the
string is embedded. The formula for the susceptibility is

)= d—1—+/(d—1) (d-25)
B 12

)]
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and it is seen that the susceptibility becomes complex when d is larger than one. In fact
this is nothing but a paraphasing of the old result of Otto and Weigt [5] that the Liouville
theory cannot be quantized in a way consistent with reparametrization invariance if d > 1.
Contrary to this result the randomly triangulated model is well defined in any dimen-
sion. It is therefore interesting to investigate what happens in the neighbourhood of d = 1.
Is there a transition to a new phase where the metric of the worldsheet is singular (branched
polymers [1, 7, 8, 9, 10]), or do we have a new theory which by some reason is inaccessible
by the methods of conformal field theory. Unfortunately no analytical methods are pres-
ently available for solving the randomly triangulated models for 4 > 1. One has to rely
on numerical Monte Carlo methods for simulating the surfaces. These numerical methods
have been extensively used in the past with somewhat limited success 8, 9, 11, 12, 13, 14].
It is the purpose of the present article to describe the results of new extensive numerical
simulations for low dimensions d = 1+6. A new algorithm has been developed. It
combines the advantages of the canonical and grand canonical algorithms used in the
past and even allow for a reasonable vectorization. It is the purpose of this article to
describe this algorithm and the results obtained by the Monte Carlo simulation.

2. The model

According to the prescription of Polyakov the loop Green function of string theory

is given by
G(YD cney yn) = jggab j‘ gx exp (_ﬁ j dzé \/E aaxaax)' (2)
Y1U...u¥yn

The integration in (2) is over all connected surfaces with y,, y, ... ¥, as fixed boundary
loops. Further one has to integrate over all metrics. Interactions are introduced in a natural
way by including surfaces of different topology. Here we will restrict ourself to surfaces
with spherical topology.

In the triangulated random surfaces model the formal expression (2) is given a precise
meaning by defining the analog of the Green loop function (2)

Gg(yps s = Y, oM f T[] dxiexp(=8 Y (x;—x;)). 3
Ted ieT/oT i

Here T denotes a triangulation. The boundary loops ¥y, ..., y, are approximated by polyg-
onal loops which constitute the boundary éT of T. The integration over metrics is replaced
by summation over triangulations Te J, where J is a suitable class of triangulations
with trivial topology. If the integral (2) is extended to include higher genus surfaces, the
same can be done in (3) by simply enlarging the class of triangulations . Finally, the weight
o(T) should be chosen appropriately (see [1] for a discussion). Here we will simply take
o(T) = 1 as this simple and natural choice has shown to be sufficient to produce resuits
identical to the ones derived by Knizhnik et al.

The idea behind the regularized version of the loop Green functions given by (3) has
been discussed in detail in the original articles {1, 2, 3]. Let us only mention here that it is
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supposed to represent an explicit invariant sum over all relevant surfaces. No reparametri-
zation invariance is to be taken care of by gauge fixing. In this way it is a kind of Regge
calculus. Relevant physical excitations like the Liouville mode is automatically included,
while non-physical excitations should disappear when we approach the critical point B, in
the right way. This critical point is the value of the “bare” coupling constant § where (3)
diverges.

Let us define the observables that will be of interest for us in the scaling limit § — B,.
The mass gap m(p) is defined by the exponential fall off of the two-point function (the two-
-loop Green function where the loops are contracted to points):

Gy(x, y) ~ e "B for  x—y| = @)
and the critical exponent v for the mass gap is defined by
m(p) ~ (B—B)’ for B B. )

General scaling arguments show that v is related to the Haussdorf dimension of the surface
dy by

dy = 1/v. (6)
Finally the susceptibility y is defined by integrating over the two-point function
2(B) = [ dxGy(x, y) M
and its critical exponent y is determined by
xB) ~ (B—B)7 for B-p. ®

Since we get the integrated two-point function by differentiating the one-point function
with respect to # we have the following behaviour of the one-point function G,(x,) near f,:

Gy(x0) ~ L (B/H™*N'™2 ~ (B~ o)™V ®

It can be proven that y < 1/2 for any reasonable choice of o(T) {1, 7).

The only additional thing we need to recall is the mapping of the model on an equivalent
model where the summation is over ¢3-graphs rather than over triangulations. This mapping
is established by noting that the dual graph to a triangulation is a ¢3-graph and further that
topology is preserved in this mapping. This means especially that the planar triangula-
tions are mapped into the planar ¢>-graphs which is all we need.

The one-point function Gy(x;,) has by translational invariance no dependence on the
distinguished point x,. It is explicitly given by

Gg(x;,) = Z .[ H dx;exp (—p Z (xi_xj)z)' (10)
Ted <

ieT/{io}

The transformation to the dual representation leads to an equivalent representation

Gitky)= Y | TI dkcexp(—§ (;) (ke—k,)?, (11)

PeF  ted3/{to}
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where ¢* denotes a planar ¢3-graph, & the set of all planar ¢3-graphs and ¢, ¢’ points in
the given ¢3-graph (triangles in the original triangulation). Finally the summation in the
exponent is between neighbour points in the ¢*-graph. By performing the k integrals explic-
itly we get an asymptotic expansion for a large number of vertices N in the ¢3-graphs;

Gy ~ X N> exp (B—P)N. (12)

The “partition function” (11) is the one we want to simulate in order to determine
the critical exponents y and v. The reason for choosing the dual ¢* graphs rather than the
triangulations is just convenience in terms of computer programs plus the fact that the
simulations untill now have used triangulations. In this way one would get a more inde-
pendent determination of the critical exponents.

3. The algorithm

The main problem is to determine the “partition function”
Gy ~ ; Zy exp (- BN), (13)
where the entropy factor Zy according to (12) is given by

Zy ~ N"" % exp (B.N). (149

Usually the determination of the partition function is not the best question to address
by Monte Carlo, although it is made somewhat easier in this case by the discreteness of &,
In order to extract y we have to find an algorithm which preserves detail balance and which
induce transitions between states of N and N-2 vertices. This has been done [7, 8, 12].
This kind of “grand canonical” updatlngs has certain disadvantages, like fine-tuning
problems of the chemical potential §,. In order to circumvent this and in order to get
a completely independent simulation a new algorithm has been suggested [15]. This algo-
rithm is in spirit the same as has already been used by Bhanot et al. in lattice gauge theories
to determine the partition function [16], although here it has of course been redesigned to
the particular problem which we address.

Let us denote the set of states consisting of N vertices by Sy. The individual states
are denoted by x, y, ... They depend on the positions of the N vertices and on the ¢3-graph.
Their statistical weight is denoted W™ and can be read off from (11). Suppose we have
some operations which allow transitions from Sy — Sy_, and vice versa with transition
probabilities V_(y = x) and ¥V, (x — y) chosen in such a way that detailed balance is
fulfilled:

WY, (x = y) = WVV_(y - x). (15)
By definition

Y W=z (16)
YeSn
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and it follows from (15) and (16) (see [15] for details) that

Zy_, Vo(y = x)
- — 7
Zy <Z Z Vix = 2)/ 5 1n

xeSN -7 zeSy

where (@) denotes the expectation value of the observable 0 if the number of vertices
are kept fixed:

Oy = ZI—N Z 0. W, (18)

xeSN

In order to apply the general formula in our case we have chosen to let transitions
between ¢3-graphs G™ e Sy and GNP eS,_, be the contraction of a 3-point loop
to a vertex and the replacement of a vertex with a 3-point loop. The detailed formula
for Zy_,/Zy can now be worked out according to (17) (see [15] for details). The main
point is that we have an explicit operator 0, given by the left hand side of (17) of which
we can calculate expectation values (18) on the set Sy of planar ¢>-graphs consisting of
N vertices. The weight used for the individual ¢>-graphs is determined by (11). The method
used for calculating these averages is the standard Monte Carlo flip method [3] which has
been used extensively to determine the mean square extension of the surfaces. Now we can
in addition measure Zy_,/Zy by (17) and (18):

=L0,0n (19)

and this allow us to determine y since (14) gives

log (Z;‘Z) ~ —B.+Q2—=7)/N+0(1/N?). (20)
N

The only practical problem left is the problem of an effective computer code. The flip
operation is notorically difficult to vectorize. We have partially circumvented this problem
by vectorizing in the number of systems which we simulate. The details of this algorithm
will be described elsewhere [17], but the philosophy is quite simple. Although the flip
operation itself cannot be vectorized since one has to make a non-local check whether it is
allowed or not, everything else can be vectorized. All these additional operations are now
vectorized simply by having many systems.

4. Results

The simulation of the system was done in 1 to 6 dimension. Typically 500 systems were
simulated in parallel and the number of vertices in the ¢>-graphs were in the range 4-200.
The number of MC-updatings for each system at a fixed N was typical of the order of
100.000 sweeps. Half of these were heatbath updates of the coordinates, the other half
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were change in the ¢®-graphs according to the flip algoritm. The total computer time used
was of the order of 100 Cray-XMP hours.

The measurement of the Zy_,)/Zy was done by measuring the expectation value of
the operator 0, for a fixed N. The statistics was quite good even for large N, presumably
because @, is a local operator, and even if the fluctuations of the surfaces become larger
with increasing N, the fact that we take an expectation value of a local operator counteract
this to some extent. In fact the values are such that we can consistently include 1/N? cor-
rections in the fits (20). This is absolutely necessary if one wants to reduce the systematic
errors in the fit determination of y. In this respect the simulation is much superior to, for
instance, the one in [11].

The values found for y by standard y? fitting is as follows:

d 1 2 3 4 5 6
¥ —-035( -022 | —-0.10 | 001 0.08 0.13

The error bars are of the order +0.05. We see that the values extrapolate nicely down
to y = —1/2 for d = 0 as it should. However there is the immediate problem that we do
not get the correct value (y = 0) for-d = 1. This can be partly understood by the fact that
there are logarithmic corrections to the asymptotic expansion (15) in the case d = 1 which
can be solved explicitly.

Zy = (exp B.N)/N*log N for N - oo. (21)

Including this log N factor in the fit brings the value of y closer to zero but it is still
below zero and the asymptotic form (21) is actually inconsistent with the data (y2 =~ 20).
What is worse is that we have no chance of determining whether this kind of logarithmic
correction is present for d > 1. The fit cannot determine both y and x in a possible term
(log N)*.

If we assume there is no logarithmic correction we get a perfectly consistent fit with
a y' around 1 and the best that can be said is that the data are not consistent with the
assumption the y stays zero and only the exponent x in (log N)* changes for d in the
range 1 to 6.

The same somewhat disappointing results are obtained for the fit to the Haussdorf
dimension dy. At d = 1 it is known that the size of the surface should grow as log N.
The fit favours (log N)* behaviour where o &~ 0.5 while for higher dimensions 4 a power
behaviour N'/# is favoured, with dy decreasing with d. This is essentially in agreement
with old results, but a warning should be given: It is notorically difficult to distinguish
between large dy and a logarithmic behaviour. For d > 3 it is clear that a power behaviour
is preferred, however.

To summarize: If we take the Monte Carlo generated data on face value the most
naive analysis shows no sign of a phase transition at d = 1. However, we are still analysing
the data, and a more sofisticated treatment might reveal some sign of interesting behaviour
near d = 1.

It is a pleasure to thank Dima Boulatov and Volodja Kazakov for a pleasent collabora-
tion.
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