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AN EXAMPLE OF ELECTROWEAK MAGNETISM*

By J. AMBIORN AND P. OLEsEN
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark
( Received September 5, 1989)

The classical electroweak theory is unstable for magnetic fields H satisfying eH > m%,
my, being the W mass. We discuss the origin of this instability and the peculiar anti-screening
property of the W-condensate formed. The anti-screening is closely related to the asymptotic
freedom of the SU(QQ)n-fields, thereby motivating the name ‘Asymptotic Freeon”. For
sufficiently large magnetic fields we expect symmetry restoration. This is verified by Bogo-
mol’nyi’s method which allows us to reduce the ordinary second order electroweak equations
to first order equations in the special case where the Higgs mass my, is equal to the Z-mass m,.

PACS numbers: 11.10.Jj

1. Introduction

QED in principle allows the existence of arbitrary large magnetic fields. This is to
be contrasted with the case of electric fields where external electric fields are able to perform
work on the virtual electrons and put them on-shell. For a magnetic field we know that
the Lorentz force cannot perform any work on charged particles, and the “vacuum”
consisting of an external magnetic field is indeed a stable field configuration. The quantum
fluctuations of charged scalar and spinor particles will in general try to screen the external
field and the resultant effective action for the external field will be non-linear but there will
never be a pair production of real particles as is the case if we have strong electric fields.

In this article we will discuss what happens if we couple a spin-one particle to an
external magnetic field. We will show that some of the stationary energy eigenvalues
in the linearized approximation become imaginary. This implies that large magnetic fields
are unstable. As a consequence it is no longer sufficient to consider linear quantum fluctua-
tions around the large constant magnetic field. One has to consider the full non-linear
equations for the charged vector particle, which in the real world means the equations
coming from the electroweak theory. As we will show the electroweak theory has for such
large fields certain similarities with a type II superconductor: One gets a spontaneous break-
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down of translational invariance and the formation of a charged condensate with a periodic
structure. However, everything else is turned “‘upside down” compared to an ordinary
type II superconductor: The charged condensate only exists for an average field strength
fi2 > H®),..i and the condensate currents go in the opposite direction, they antiscreen.
As we shall show this phenomena is closely related to the asymptotic freedom of the non-
-Abelian part of the electroweak theory. We show that there exists an upper critical field
strength H ... For fi, > HZ),..x We have symmetry restoration in the electroweak
theory.

2. The electroweak transitions

The Lagrangian of the electroweak theory is (ignoring fermions):

= _{’i‘ Iﬁva—ﬁvalz+%f}2v+% Z§,+(6‘,¢p)2}

g’y g'e’
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where W, and Z,, are the usual vector boson fields and the covariant derivative is given by:
D, = 0,—ig(A,sin 6+Z, cos 6). )

The electromagnetic vector potential is denoted A, and the field strength corresponding
to electromagnetic currents and neutral currents are

Sow=20,A4,-0,4, Z, =0Z,-0,Z, €)

The electromagnetic charge e and the hypercharge g’ are related to the SU(2),, charge
g by the standard relations

e=gsinf,, g =gtanb,. (¢

The Lagrangian (1) is written in the unitary gauge where the Higgs field is real.

It is clear that a constant magnetic field (26) is a solution to the classical equations
of motion. We simply choose W, = Z, = 0, ¢ = g,. More generally we can couple the
electromagnetic field to an external electromagnetic current j;* and study the quantum
fluctuations of 4, W,, Z,, ¢ around the classical solution:

oSy = —=ivs 9= go Q)

We will now argue that f, cannot be arbitrary large. Eventually the fluctuations of the
charged field W, will be so large that the system undergoes a phase transition to a new
phase where there is a W, (and Z,) condensate.

For simplicity we consider the case of a constant magnetic field. The coupling of the
W, field to 45" is given by

FW)= -} (j;,‘)z-—-%- [D@W,—D‘,W,,l2 - m:WJW“-!— ief;",‘W;W,, (6)
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where
D, = 0,—ied], A x)= —xHé,,, )
2 2
m2 = g 2% . ®

The important term in (6) is the ‘“‘anomalous” magnetic moment term ief,fv"WIWv, compared
to a minimal coupled theory of charged vector particles. The origin of this term can be
traced back to the non-Abelian nature of SU(2),,..,- The equation of motion corresponding
to the linearized Lagrangian (6) is

{(=D’g,,+D,D,) + mig,,—ieI}W* =0 ©
and it follows from (9) that ‘
DW,=0 for j*=0. (10)
This condition is the natural generalization of the well known relation
oW,=0 (11)

valid for a free massive vector particle, and the anomalous term ief;;#” in (9) is necessary
in order for (10) to be valid.

The instability of the linearized theory (6) for large magnetic fields is due to the anom-
alous magnetic moment term. We assume again for simplicity that the electromagnetic
field is constant in the z-direction in space, but the arguments to be given are clearly valid
for any field configurations if only the spatial variation is slow compared to the field
strength, The assumption implies that f;, (= H) is the only field component different from
zero and we get an effective mass term

2 .
+ wh [ Mw ieH\ (W,
(", (). "
The mass eigenvalues are
m? = mlteH 13)

and it is seen that the lowest mass becomes tachyonic at a critical field strength
H® = ml (14)
and the corresponding eigenvector is
(W, W) = (W, iW) (15)
satisfying that the kinetic term in (6) is equal to zero if

(Dy+iD)W(xy, x3) = 0. (16)
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The general solution to this equation in the case of a constant magnetic field is
W(xy, ;) = e~ #HF(z), 17
zZ = x1+iX2, (18)

where F is an arbitrary analytic function. From these considerations it is natural to expect
that for external fields larger than or equal to H{" one shall have a W condensate with
W, and W, related by a constant phase n/2. By analogy with a type II superconductor
one would expect |W(x, x,)}| to be periodic. It follows that F(z) must be a generalized
Jacobi theta function with parameters depending of the unit cell of periodicity in the
x,—X, plane (see [1] for details).

The W-condensate differs from the ordinary y-condensate of a type II superconductor.
The stable solution if f;, = H, W = 0 for low fields and the condensate in only formed for
fi2 > HY). Contrary for a superconductor where the solution f;, = H, y = 0 is stable
for f1, > H.;, and a yp-condensate is only formed for the applied field less than H,;,. Near
H_,;, we have in both cases that the strength of the condensate is small and it makes sense
to study the back reaction of the condensate on the electromagnetic field. We have:

avf;lv — J‘l‘nduced, (19)

jinduced i1 the case of a superconductor is the usual convective current

where j,

jr=X(y) = —iey*(D,~D}y. (20)

For the electroweak theory the induced current can be derived from the Lagrangian (6)
and is given by

induced(Wu) = Jcomecnve + Jspm’ 1)
where the convective current and the spin current are
jom™ = —iew}(D,—DhHw,, (22)
P = ie(WID,W,— (D, W)IW,) —ied (WiW,— w,W}h. (23
As a consequence of D, W, = 0 and the ansatz (15) we get
jiruesd(w) = 2ieWt(D,— DHW 24)

and we now see a crucial difference between the ordinary y-condensate and the W-conden-
sate. It is well known that the y-condensate will set up currents to screen the external
magnetic field (Lenz law). In the linearized approximation W = v, and since (24) is identical
to (20) except for a sign, we conclude the W-condensate set up currents to enhance the
external magnetic field. We have anti-screening.

We can trace the difference to the spin part of the induced current. This part is minus
two times the convective current part. It also tells us that this anti-screening is a consequence
of asymptotic freedom. The 1-loop vacuum polarization can be calculated from the current-
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-current correlation

Tu(=y) = ™ X))y 2%

and the -function can be related to the renormalization Z; of 7, in the so-called back-
ground gauge which is essentially equivalent to (9)-(10). The contributions to f-function
from the convective part and from the spin part of the current ji"****(x) can be explicitly
calculated (see [3], [2]) and the negative sign of the p-function is due to the spin-current
correlation.

The magnitude of W is not determined by the linear approximation used so far. It is to
be expected that the growth in W due to the instability will be stabilized by including the
|W|* terms for the Lagrangian (1). This is what happens in a type II superconductor. The
strength of |y}? is eventually determined by including a 2|y|* term in the Ginzburg-Landau
Lagrangian.

Let us for simplicity still ignore the Z, field. In the presence of an electromagnetic
field £, the “potential” energy involving the Higgs- and the W-field is (W, = (W, iW, 0, 0))

V(p, W) = —2ef1,|W*+ g p* W/
—22@3¢> 28X WI* + A(¢* + ). (26)

We are here ignoring the “kinetic” terms (0,p)* and |D;W;— D;W,|* and the spatial varia-
tion of f,, in order to present some heuristic arguments for the symmetry restoration
for large external fields. If ef,, is less than m2 a minimum of V(g, W) is given by ¢ = ¢,,
W = 0 and we have no W-condensate. If ef,, is above m2 we will get a W-condensate
and minimalizing with respect to W gives

2

gy
5

2

28°Wlnax = ef12— @7

As |W|? increases with efy, the expectation value ¢? will decrease from @2 because the
term g2¢?{W|* will counteract the Higgs term —21¢Z@2. One finds

2
my—efiz
(px%xin = ¢(2) mlzl_mvzv' ’ (28)
my = 4dg), mi =3 g (29)

The Higgs- and the W-mass in the ordinary vacuum are denoted m, and m,, and we see
that the expectation value (¢?) will approach zero as the average electromagnetic field
strength is larger than the Higgs mass provided the Higgs mass is larger than the W mass.
These heuristic arguments suggest that a W-condensate should exist for

Ht(::i)t <fiz < HE), (30)
where

1 2 2 2
eH‘(:ri)t = My, er;ri)t = my (31)
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and above H?), the SU(2), x U,(1) symmetry should be restored although the present
simplified arguments do not suggest what happens to the W-condensate above H'Z).

For my < m, we get by a minimalization of (26) that ¢ = 0 as soon as f,, > H'})
and my' and m; ! are very much like the coherence length and the penetration length
of an ordinary superconductor where m, = m,, is the borderline between type I ad type
II superconductors.

However, the analogy should not be pushed too far.. Contrary to the y-condensate
in a superconductor the ¢ field does not couple directly to electromagnetism and it is only
through the formation of a W condensate that the symmetry restoration takes place in the
electroweak theory. In the next Section we will consider in some detail what happens

for m, > m, which is presumably the case realized in nature.

3. The condensate solution

We consider again a situation where unspecified extend sources at far away distances
produce a homogeneous field H in the z-direction. For eH > m? we have argued that
such a constant field cannot be a stable solution to electroweak field equations. The W-field
will develop expectation values in the 1 and 2 direction with W, = iW, (= iW). Making
this ansatz and assuming that translational symmetry in the z-direction is maintained the
static electroweak energy density of (1) can be written as a sum of squares plus total deriv-
atives:

2
& = 5(51’*"'52)W!2+%(f12+ @3 —2g sin Binz)

g
2sin @

2
g
+% (212““ (9> — p3)—2g cos O!WIZ)

2c¢cos b
2 2 2
89 4 2 2\2 g 4
- - -5
+ (2 cos 0 Z‘“"a“”) + ( § cos? 0) (@ =90 ~ g7 7
2%, g9s g
B - (e, Z,0°). 32
+ 2sin Bf” 2cos8 '* 2cos@ (&2 ¢2)

If we demand

gz

£ 8—0—0——‘829 or mh = m! (33)

the squares in (32) all have positive coefficients and the minimalization of j’&dxldxz
will be obtained if we can solve the first order equations [4].

gPs

i 2 35
7 oos 0 +2g sin |W| 35

f12 =
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_ g
127 2 cos 8

(9" — 3)+2g cos O W7, (36)

2cos @
Z; - -

&;0;In . €1))

It is seen that the method used is the one of Bogomol’nyi and the relations (33) have
a status similar to ¢* = A/8, the borderline of type I and type II superconductors, where
it is possible to reduce the second order equations of y and 4, to first order equations.

In order to actually solve (34)-(37) it is convenient to eliminate Z; and A4; in favour
of two coupled second order equations in |W| and ¢. The phase x of W = |W|expiy
will have a topological meaning, exactly as the phase of the complex condensate parameter
¢ in a type II superconductor. It determines the number of zeroes of W in a fundamental
cell of periodicity. But it can be gauged away by a singular gauge transformation:

1
A A+ Y 0 (38
In this singular gauge it is straightforward to derive the following equations for |} and ¢:
~In|W| =} g’p" +28" W%, (9)
2
82 1 2 - 2__ .2 2 2 2'
D@t =g (¥ ~P0)+28 W] (40)

These equations can be solved numerically imposing the periodic boundary condi-
tions (see [5] for detail). However, assuming that there is a solution it is possible to discuss
its general structure and the question of symmetry restoration without knowing any details
of the solution [6].

If we denote a unit cell of periodicity in the 1-2 plane by %, its boundary by é# and
its area &/ we have

o L4

and the electromagnetic flux &, through the unit cell % will be quantized

2nk
Dy =—. 42)
e
The flux quantization, which at first sight might be a little surprising, follows in
the same way as for a type Il superconductor since the line-integral of 4, around 6% can
be expressed as the change of the phase y along this boundary.
By integrating the equations of motion (39) and (40) over # it follows that

2nk = £ g | ¢*+2¢° q{ 17458 (43)
&

= —misf+1 g | p?+2g%cos? 0 | |W|% (44)
% L4
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From these two relations we conclude that the area must be bounded by
2nk/mE < of < 2mk[m2. (45)
At the upper limit for o we find from (35), (42) and (44)
<f1 2> chuca!
¢*> =@

while the lower limit gives

= H?®).
2{’}22; ; g“"’“‘} for o =2n/mi. 47

} for o =2n/ml (46)

We see that (47) exactly agrees with the heuristic limits derived in the last Section,
where it was shown that the transition to {@®)> = 0 when the growth of g2|W|>¢? made
it comparable to the negative (mass)? term —21¢3¢? from the Higgs potential. Here we
can calculate the “average coefficients” (g?|W|*) and —24¢}3 and we find they are equal
at o = my : for {f,,) = H), on average the Higgs mechanism is cancelled by the coupling
between W and ¢.

We now turn to a more detailed investigation of symmetry restoration at & ;, = mg.
It is convenient to rewrite our solution in terms of the variables for SU(2),, x U,(1). If we
introduce the vector field B, for the group U (1) and the non-abelian vector fields A, for
the group SU(2), we have

B, = A,cos 0—Z,sin 0, (48)
A} = A, sin 0+Z, cos 0, (49)
Al = \/Z(W +WY, A= ji(w —-Wh, (50)
and

B,, = 9,B,—0,B,, (51)
Fa, = 0,A45— 0,45~ ge"  ALAC. (52)

From the first order equations of motion (34)-(37) one finds
gFl, = 1 g9’ (53)

while all other components of F&, are zero. The result for Fj, follows in a slightly non-
-trivial way. We see that our condensate solution has the property

F;j=»0 for ¢-0, (54)

When (f},) is larger than H{}), the only non-vanishing field is thus the boson field B, asso-
ciated with Uy,(1). The conclusion is that the solution interpolates sin a self-consistent
manner between the broken and the symmetric phase when the magnetic conduction
{fi12) varies between H{ic and H e

Is is remarkable that we begin with a “trivial” solution f;, = const. and end with
a “‘trivial” solution B,, = const., but the condensate solution itself is highly nontrivial.
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This is most clearly seen by using the B,,, F},, ¢ variables and by realizing that ¢ = const.
cannot be a solution to (34)-(37) unless ¢ = 0 or ¢ = ¢,.

4. Discussion

We have shown that the vortex like solutions with W and Z condensates provide us
with a classical solution to the field equations which interpolates between the ordinary
spontaneously broken symmetric phase and a phase where the SU(2), x U(1) symmetry
is restored. The condensate has remarkable properties compared to the condensate of an
ordinary Type II superconductor. Most notable the currents “anti-screen” a property
which motivated us to call the condensate “asymptotic freeon” [7] as this anti-screening
was closely related to asymptotic freedom of the non-abelian SU(2),, part of the electro-
weak theory.

At this point one can ask whether one can trust classical solutions at such strong
fields? Maybe radiative corrections would be large and completely invalidate the above
considerations. We can partly answer this question by performing a the one-loop calcula-
tion in an external field. The calculations has been done in complete detail for the closely
related Georgi-Glashow model where the gauge group is SO(3) and the Higgs fields are
in the adjoint representation [see [8]]. The result is

Evee = Y H*(1—~aF MY i LA DY O , (33
a mfv eH eH

where F(x) is a regular function for x ~ 1. The smallness of o(~ +3=) makes the ordinary
radiative corrections small in the region m% < eH < m{. In fact the only serious problem
in (55) seems to be the appearance of an imaginary part. This is just the instability we have
discussed and the imaginary part tell us that conclusions based on radiative corrections
obtained by expanding around this vacuum become physically unreliable. We should
clearly, as we have tried to do, find a new (stable) classical solution and expand around
that if we want to study quantum corrections.

We have not proven that our condensate solution is stable. A proof would require
that we studied the fluctuations around the solution, a difficult task since we only know
the solution numerically. However, a simple-minded analysis seems to suggest that the flux
tubes could be quite stable and have even macroscopic length [9].
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