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1. Introduction

The spectrum of pure gauge QCD is of considerable interest. Of course there is also
interest in the spectrum of full QCD with dynamical quarks — but experiment already
gives the results directly. What is of interest is to understand the way that QCD operates
and the pure gauge spectrum is a very valuable waypoint. Since it cannot be determined
experimentally, at present the only practical way to determine this spectrum dlrectly from
the. QCD Lagrangian is by using lattice gauge theory simulation.

This lattice simulation includes the full non-perturbative interaction between gluons
but at the expense of introducing a discrete space-time lattice. One of the important cross
checks then needed is to vary the spacing of this lattice, and to verify that the results are
independent of it. This is referred to as scaling which, if satisfied, allows one to deduce
that the results will be valid in the continuum limit. Because lattice regularization, like
any regularization scheme for QCD, introduces a dimension or scale, the results appro-
priate to the continuum limit will be dimensionless ratios such as mass ratios.

In order to understand the current status of glueball results from lattices, I present
details of the classification and extraction methods used. This also gives some insight into
the colour nature of these states. The main results will follow those of Michael and Teper
[1] but I shall also try to review other recent results [2].
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2. Method

In the continuum, glueball states are classified by their Lorentz covariance properties:
momentum p, mass m, spin J, parity P, and by their charge conjugation C. On a euclidean
hypercubic lattice, the relevant symmetries are (i) discrete translational invariance if periodic
boundary conditions are used (so momentum is conserved but is discrete in steps of 2z/L
for length L) and (ii) a cubic rotation group O, with one, two and three-dimensional
representations (for non-zero momentum only the space group which is a subgroup of
0, is relevant). These representations have conventional names: the code is that A is one
dimensional, E is two dimensional and T is three dimensional. Details are given in elemen-
tary texts on group theory in theoretical physics. Since O, is a subgroup of SU(2), a single
SU(2) representation can be decomposed onto one or more O, represntations. Thus, for
example, the J? = 2% representation with five magnetic levels is given by degenerate E*
and T; representations with two and three states each. Thus in principle if the spectrum
is known accurately for all O, representations, one can fit them into SU(2) multiplets
straightforwardly. Likewise, although full euclidean continuum invariance is not explicit
in the lattice calculation, one expects its consequences (such as a relationship between
energy and momentum E? = m?+p?) to be progressively more accurately reproduced
as the lattice spacing a is reduced.

The standard use of lattice Monte Carlo simulation is to construct samples of the
vacuum on a hypercubic 4-dimensional lattice of size L3 x T with perlodlc boundary condi-
tions. The simplest lattice action is that proposed by Wilson and this is used most commonly.
The basic simulation uses a Metropolis or heat-bath algorithm to update the colour state
(encoded by an SU(3) matrix) of a link in the presence of all the other links. Repeated
application gives sample vacua. Checks are needed that these samples are statistically
independent and various methods have been proposed to speed this up (multi-grid methods,
over-relaxation, etc.). However, for the results reviewed here, an efficiently vectorized
impleméntation of the basic algorithm on a supercomputer is adequate.

In order to determine the energy of a state in euclidean time, one calculates the average
over the sample vacua of a correlation C(t) between quantities at time separation z. To
study colour singlet states such as glueballs, the correlation of two closed Wilson loops
at time separation ¢ is appropriate. For a simple transfer matrix interpretation, it is con-
venient to take these Wilson loops as purely spatial. Then provided T, the length of the
lattice in the time direction, is sufficiently large, this correlation C(z) gives information
about glueball propagation where the glueball states are created by the loop P acting onthe
vacuum. Then dependent on the shape, etc. of the loops, one will obtain contributions
from glueballs « of energy E,:

C) = CPOPH)) = T OPlay exp (— Eof) <alPI0Y.

As t is increased, the lightest glueball state will dominate and hence its energy E can be
obtained (actually Ea, where a is the lattice spacing, is extracted). Now to concentrate
on glueballs of specific quantum numbers, one should choose the loop P to have the re-
quired rotation, parity and translation symmetries. In practice this means using suitable
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TABLE 1

The projection table for the cubic rotation group O. The object is rotated so that its principal axis is along
the top direction and its secondary axis is along the second direction. The third orthogonal direction is

included for convenience when taking parity reflections. The numerical coefficients are then given — they

need to be normalised,
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The sum over translations

Y. exp (2ninx/L)P(x) yields momentum p = 2mnn/La where (ny, n,, n;) are integers and the

linear combinations of translated and rotated loops.

spatial size is L3. Most results come from the zero momentum combination, but useful

information is also obtainable from small non-zero momentum values. For zero momentum,

the relevant sum over rotations R of the loop P is given by the projection table PJ (rep, R)

for O:

> PJ (rep, R)R(P).
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For convenience this projection table for O is given in Table I. A sum or difference of
parity reflections then yields parity eigenstates, and taking real or imaginary parts of the
loop gives C even or odd.

Even when a loop combination P has been constructed which has a unique momentum,
space group representation, parity and charge conjugation, it is important to optimize
the overlap of P with the lowest glueball. Thus P acting on the vacuum can be expanded
in a glueball basis (including two particle continuum states as well): '

POy = ¥ ¢l

The observed correlation C(¢) is then given by
C(1) = Y, lc* exp (—E,1)

from which the lowest glueball energy can be extracted by

E; = limmg(t) where am(t) = —log(C(t+a)/C(D)).
=@
Since C(t) decreases with increasing ¢ while the error stays relatively constant, the values
of C for small ¢t have smallest relative errors. Thus m, is best determined at small ¢. The
relative effect of excited glueballs is least at large ¢, however, so the systematic errors
in extracting E, are least where the statistical errors are largest. Thus it is important to
optimise the overlap of the ground state |{1), nemely

=<

lea|? = [KOIP|1)|* = exp {— tz a(meee(t) — Ey)}

=0
in order to reduce the error in the determination of E; (here we normalise ) |c,|> = 1).

o

There are several ways to improve the determination of E; : (i) by measuring simultaneously
correlations between several different shaped loops P(j) and using a variational method
to find the optimum combination of them to enhance the ground state contribution,
(i) to construct loops P which have a very large overlap by using a smearing or fuzzing
procedure. Both of these help, but the recent major improvement in glueball mass determi-
nations has come predominantly from the judicious use of fuzzing. The variational method,
however, has especial value in enabling further excited states in the spectrum to be studied.
In principle an N loop basis with an Nx N matrix of correlations measured enables N
energy levels to be extracted.

After much experimentation, an efficient fuzzing algorithm has been found to be [3]

U= P[U(x, pU(x+p, w)+ Y, U, WU(x+v, pU(x+v+p, U (x+24, v)],
vEu, vEO
where the sum is over 4 staples in spatial directions orthogonal to u, P implies a projection
back to the nearest element of SU(3) and the notation is that U(x, y) is the colour matrix
corresponding to the link from position x in direction p. See Fig. 1. The new fuzzed link
is of twice the length of the original links. This prescription can then be iterated to give



123

el L_J/——zl
a

2 -
b c d e
f g

Fig. 1. (a) The fuzzing prescription. The P symbol indicates a projection to the nearest element of SU(3).
(b-f) Closed paths used as glueball operators. (g) A path encircling the periodic boundary conditions used
as a torelon operator

superlinks of length 2, 4, 8, etc. The motivation for such a prescription is that it averages
over the colour fields in a given space-time region in a rather smooth way and thus is less
sensitive to the ultraviolet fluctuations present in the lattice vacuum samples. This then
reproduces the ground state well since the ground state has the smoothest colour fields.
Another motivation is that the ground state of colour flux between static colour sources
is also known to be rather delocalized and to spread into a transverse region comparable
with the length. The upshot is that low energy glueballs are very efficiently made from
such fuzzed links. For instance 909, overlaps are obtainable — which gives very accurate
mass determinations.

With the same loop combination at time 0 and ¢, the effective masses extracted from
the correlation are upper limits (i.e. m(t) > E;) and monotonically decrease as ¢ increases.
To estimate the value of E itself, a typical algorithm is to find the least value of ¢ where
m (1) and m(t1+a) agree within their statistical errors and to use the smaller of these
two values of m,, with the errors from the ¢#+a value. This algorithm is conservative
in that the error comes from 7+a which is normally larger than that from z. This serves
to take account of the systematic error in the extrapolation in 7.

As well as glueball observables obtained by measuring correlations of spatial Wilson
loops at time separation ¢, one can consider spatial Polyakov lines which encircle the periodic
spatial boundary — see Fig. 1. For an SU(N) pure gauge theory, invariance under the
centre group Z(XN) means that there are different sectors labelled by an integer mod (N)
in each space direction. The simplest such sector has integers 1, 0, 0 and corresponds to
one unit of electric flux in the x-direction. The states of this sector are orthogonal to glueball
states (integer 0, 0, 0) and are called torelons, The torelon sector also has further symmetry
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classification: momentum transverse to the electric flux direction and representations
of D,, to account for rotations, reflections etc. The most symmetric state is isotropic under
D,, and has zero momentum and this is the most commonly studied state. This torelon
can be thought of as a colour flux line encircling the boundary and so it has energy KL
where K, is an effective string tension. This string (colour flux line) has no end effects
compared to that between static colour sources and so the string tensions defined in these
two different ways may not be identical for finite separations. Again it turns out that
a fuzzing prescription enhances the torelon overlap. Thus accurate string tension values
can be obtained on spatial lattices as large as 20°.

3. Results

The best determined energy levels are those corresponding to the torclon and the
O+ and 2+ glueball masses. Interpreting the measured torelon mass Eq in lattice units
as K (L/a)a®, one can see whether the lattice spacing a has the dependence on the bare
coupling constant (where B = 6/g? is quoted conventionally in lattice evaluations with
SU(3) colour) that follows from perturbative QCD. This corresponds to a behaviour

E Q> - 177 4=
T 338
L —Ea(Z=p) €T
Aja 33

where A, is the lattice regularization scale. Thus K/ Ay should be constant as § increases
(g decreases) if perturbation theory is applicable. For SU(3) pure gauge one obtains values
[1] of 94. 1(1.2), 89.4(0.9) and 82.0(1.6) at B values of 5.9, 6.0 and 6.2 respectively. Thus
we see a statistically significant deviation from asymptotic scaling. This is in accord with
results from Monte-Carlo Renormalization Group studies. These results are equivalent
to an effective f-function which is 709, of the two loop perturbative value. This is not
a great surprise since the bare coupling constant has a value of g &~ 1 and thus low order
perturbation theory need not be very precise. Evaluations at significantly higher values
of B will be needed to investigate the approach to asymptotic scaling.

Rather than use perturbation theory to determine the dependence a(g), one can just
determine dimensionless ratios and check the weaker assumption (called scaling) that
the dependence a(g) is universal and so cancels. The best determined such ratio
is m(0++)/,/K ¢ and this is illustrated in Fig. 2. At sufficiently large B, it is consistent with
scaling. However, this ratio at lower g is much less. This is the root of the increase in recent
years of the 0++ glueball mass: /K ; = 0.44 GeV is used to set the scale (from the slope
of Regge trajectories) and hence m(0*+) has increased since its ratio to \/K—; has increased
with B (and hence with time since larger # corresponds to smalller lattice spacing a and
has become accessible to computer investigation more recently since larger computing
resources are needed). Fig. 2 illustrates the remaining uncertainty in determining the
glueball masses in physical units: a further increase of the ratio with increasing g is not
ruled out. As well as that possibility, it must also be kept in mind that the value of K,
taken from experiment includes dynamical quark effects. These might easily cause a 209
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Fig. 2. The ratio of the 0+* glueball mass to 4/ K.¢¢ where the effective string tension K, is obtained from
the energy of a flux line encircling the periodic spatial boundary. Results from Refs {1, 4] are at S-values
shown and with spatial volumes as shown

change in the value of K, when removed. This estimate of 209 comes from the perturba-
tive change in the B-function which is one of the few cases where dynamical quark effects
are accurately known. Predictions for mass ratios between glueballs do not depend on
these uncertainties in the energy scale and may be taken more seriously as predictions
for experiment.

In order to be sure that lattice results are not affected by the boundary used, it is
necessary to vary the spatial size at fixed lattice spacing a. The large volume results should
be independent of the volume and this is indeed found. For sizes less than 9m(0++)-1,
large deviations are found — especially for the 2*++ glueball which splits into a lighter E+*
component and a heavier T; ¥ component. A convenient measure of the spatial size is to
define z(rep) = m(rep)L for an L3 spatial volume. Thus z(0++) > 9 is found to be the large
volume region. Analytic calculations {2] are possible up to z = 4 by integrating out the
non-zero momentum modes and solving numerically the resulting effective Lagrangian
in the zero-momentum modes taking care also of the topological structure of the vacuum.
Unfortunately the large volume results from full lattice calculations do not overlap this
region where the zero-mode approximation applies.

A summary of the low lying glueball states determined by Michael and Teper [1] is
given in table II. The agreement between different lattice f-values and sizes L is good as
is the agreement between E** and T; * masses (making 2* *) and between E™* and T; *
masses (making 2~ *). The first excited A] * (0" *) state is also determined. Other groups [2]
have obtained results for the lowest A7 * state and these agree well. The 2+ state was
claimed to lie lower in some earlier work but the consensus [2] is now that the 2+/0*
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TABLE I
Glueball mass ratios to 4/Kesr

/] 59 6.0 6.0 6.0 6.2 Ave. Large
L 12 10 16 20 20 Vol.
AT 33(2) 3.8 320Q2) 340 3.6(3) 3502

ATV 55(3) 6.1(11) 6.0(12) 655 6.3(4)
E™ 5650 51(3) 513) 516 56(3) 530
T 6.5(6) 5.4(3)
ATY 43Q1 647 5.66) 7.123) 71011 637D
E~* 8.4(3) 588 7.009) 6.6(10)
TS+ 8.5(3) 7.4(7)
TI™ 8.5(28) 8.0(12) 6.710) 5.9(21) 6.9(5) 6.9(5
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Fig. 3. Glueball masses in units of 4/X.¢; from Michael and Teper [1]. The values are from Table II and the

upper limits are 20 with 2 : 1 t-ratio effective masses. For the 0+, 3+~ and 3+ states there are only very high

upper limits, Setting the energy scale by using \/f( = (.44 GeV gives the right hand scale — there is an

inherent systematic error in this scale since X is determined experimentally with dynamical quarks rather
than pure gauge

mass ratio is around 1.5. The other J¥€ states have not been accessible in most other work.
The low-lying glueball states determined by the lattice calculations have J¥¢ values which
are broadly consistent with those expected from phenomenological models.

For all remaining J*€ states, the lattice determination gives upper limits — they are
illustrated in Fig. 3. Since the 2/1 and 3/2 t-ratio variational results of Michael and Teper
agree well when they are both measurable (this is the source of the mass determinations
quoted above), one can use the 2/1 r-ratio results for all cases as a guide to the asymptotic
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mass value even when there is no cross check coming from the 3/2 r-ratio because the
statistical error is too large. In this spirit, they investigate the oddball states. These are
the J*€ values not allowed for qq mesons: 0--, 0+, 1-+. 2+-, etc. Since O, representations
correspond to a sequence of J-values, one cannot distinguish oddball states from high-J
non-exotic states in most cases. Thus the A7 7, A =, A7 *,E* 7, Ty ¥, and T; ~ representa-
tions can have non-exotic 4, 9+, 6+, 5, 4-+ and 3+~ contributions as well as the spin-
-exotic 0—, 0+, 3—+, 2+=, -+ and 2+~ contributions. Nevertheless, there is no evidence for
any such low lying states from the 2/1 z-ratio effective masses. Indeed the lowest such mass
is for the T; ~ which is a relatively poor oddball signal since it gets non-exotic 3+ contri-
butions. Thus there is no evidence for the presence of oddball states at masses lower than
twice the ground state O++ mass. This conclusion is at variance with earlier work [5] which
claimed evidence for a 1=+ oddball state at a mass similar to the 2+ state. That work was
based on a much less thorough study than more recent work.

4. Conclusions

The main technical advance which has been responsible for the recent improvements
in glueball mass determination has been the use of fuzzy glueball operators which have,
for example, a 909, overlap to the ground state O+ glueball at 8 = 6.2. Another powerful
feature is that the variational method with many path shapes allows a probe of all J™ values.
Thus one can now determine the low-lying glueball mass spectrum for a range of § values
and lattice sizes L. This enables a check of finite size effects and of scaling. The conclusions
are that for f > 5.8 and m(A; *)L > 9, one obtains consistent results — which can then
be identified with the continuum limit of pure gauge QCD. The spectrum is illustrated
in Fig. 3.

Since one can model the low lying glueballs accurately by using combinations of fuzzy
‘paths acting on the vacuum, one can study more detailed glueball properties. Exploratory
studies of glueball sizes and of glueball decay matrix elements have already been made
[6, 7] using lattice gauge theory simulation.
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