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GLUEBALL MASSES, FINITE SIZE EFFECTS
AND BOUNDARY CONDITIONS*
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Finite size effects can be dramatically different for periodic and twisted boundary
conditions, as long as we are in small volumes where perturbation theory prevails. In that
case glueballs are constituted from gluons; whereas the glueballs feel only periodic boundary
conditions, its constituent gluons experience the twist and have to wind at least as many
times around the box as there are colours. We review Montecarlo results on glueball masses
and string tension with periodic and twisted boundary conditions. For lattice sizes now
available they seem to be in reasonable agreement. Various improvements are suggested.

PACS numbers: 12.38.Mh

1. Introduction

Pure glue systems are the simplest to simulate, and careful analysis and set-up of the
simulation might give us a clue of the confining mechanism.

In the past seven years the glueball masses have been subject to changes in the mass
ratios extracted from the theory by Montecarlo simulations. The bulk of the changes came
from going to bigger sized lattices, in other words, from finite size effects. As an example:
the tensor to scalar mass ratio grew from 0.9 to 1.6 in the last five years. It is useful to see
to what extent we can still expect further change: not by going to even larger lattices, but
by studying other boundary conditions. In this paper I review the evidence that we are
now at lattice sizes where these effects do indeed vanish. Also discussed are additional
signals that show us whether or not we have entered a “string régime”.

2. Twisted versus periodic boundary conditions

Let us take any set of boundary conditions satisfying [1]
(i) periodicity for local gauge invariant quantities,
(i) uniqueness of the vector potentials.
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Obviously periodic boundary conditions on the potentials are included; but there are other
classes of such boundary conditions, as ’t Hooft has emphasized [1}; for the purpose of
our discussion we limit ourselves to boxes with a finite length L in three space directions
and an infinite extent in the time direction. The classes are then characterized by a 3x 3
twist tensor n;; with integer entries mod N (SU(X) is supposed to be the gauge group).
In every class there is a representative given by three constant gauge transforms (I'y, I'y, I';)
with the commutation relations:

2
LT Tt = exp (z% n,,) . @1

These gauge transformations relate the vector potentials 4, shifted over a period:]§
A(x+el) = [ A" 2.2)
and the twist tensor can be related to the magnetic flux vector m by:
My = 5 &M 2.3

This flux originates in the boundary conditions (i) and (ii) and is therefore expected to
have no influence on the physical objects like gluebalis we create with local sources in the
large volume limit. But the eigenstates of the Hamiltonian can remember — even in the
large volume limit — what boundary conditions were applied! Simple examples are kinks
in 1+1 dimensional field theories with spontaneously broken symmetry, and monopoles
in 3+1 dimensional field theory. But local sources are supposed to have zero overlap with
such states in the infinite volume limit.

So for correlation functions of local sources, the set of intermediate states (i.c. eigen-
states of the transfer matrix) that contributes to the correlation should be insensitive to
the boundary conditions in the large volume limit. This will be our credo. Let us not forget
that spurious states like the ones above are of non-perturbative origin. As we will be con-
cerned with perturbative physics in small volumes in this paper we should not be unduly
worried: in small enough boxes (so that perturbation theory applies) one can equally well
excite glueballs with suitable combinations of Polyakov loops (see Section 4) as with
plaquette combinations. But to extract the large volume physics one better take the local
sources.

3. Results with twisted boundary conditions: theory and experiment

Let us first discuss the qualitative picture. Small boxes allow a perturbative expansion.
So a glueball state is composed of gluons that propagate in the twisted box with a propa-
gator G,(x) whose periodicity p is determined by that of the potentials in Eq. (2.2). Let
us for simplicity restrict ourselves to SU(2).

Then the simplest possibility one can think of is a twist in say the z-direction:
m = (001). It is generated by taking I', = ioy, I', = io,, ['; = 1 in Eq. (2.1). The periodic-
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ity of the vector potentials in directions 1 and 2 is now 2L instead of L. This means that
the gluon has to propagate twice around the volume in the direction 1 and twice in the
direction 2 in order to create a finite size effect. Mathematically we can relate the gluon
propagator G, in a finite periodic box to that in an infinite box through Poisson’s formula
for a periodic §-function:

Y 8(I-1')y = Y exp (i2nn'l).

le-Z n

We get:
G (x) = G (x)+ —:tz:tz G (x+np).

In the case at hand p = 2L in 1 and 2 directions, and the gluon has to wind at least twice
around the box, as we stated before. This way of presenting is actually a slight oversimplifi-
cation: a simple counting of degrees of freedom shows that we have 4 times as much spatial
degrees of freedom as we started from! The reason is that the boundary conditions (2.2)
involve the colour degrees of freedom. The colour degrees of freedom are therefore provid-
ing the increase in periodicity, but they would expain only a factor 3 (N2—1 for SU(N)).

. . . . w 2nfn, n .
The twisted propagator G, is containing not a// momenta p = — (—x 4 ) ; in fact

—_— s n
L\2’2°°
. - - 2m. L
the momenta present in the original box, p = T n, (n mteger), are all absent; thus the

spatial volume becomes only 3 times as big. For details see Ref. [10]. Let us now describe
MC experiment and theory.

(a) The first Montecarlo experiment was done by Stephenson and Teper within pure
SU(2) gauge theory. They used the twist m = (1, 1, 1), which does not break cubic
symmetry. The reason for this is the mod 2 property of the magnetic flux. The energy
levels for the various cubic-group representations were calculated perturbatively for very
small boxes (lowest order perturbation theory). The results are compared in Fig. 1. The
values on the vertical axis are obtained from the correlation between suitably chosen local
sources (that is, with the corresponding quantum numbers of the cubic representations
shown on the horizontal axis). The correlation is followed over two time units, except
for the T';, which has only been followed over one time unit, according to the well known
formula:

correlation (41)

m < el 41) = —lo i .
a < me (A1) gcorrelatloﬂ (4r-1)

4
The value of ma still depends on g = — » the bare coupling.
g

(b) The theoretical results were obtained [3]in a continuum box (lattice length a = 0).
The formula reads to lowest order in the coupling g (see Fig. 2 for the graphs):

1 _ gz g2 2
me= {Zn J2+ey, an TG (’Z;) +0(86)} . G.D)
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Fig. 1. Montecarlo data (Ref. [2]) for various irreducible representations of the cubic group
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Fig. 2. The graphs contributing to O(1) (Fig. 2a) and to O(g? (Fig. 2b) in Eq. (3.2)

The left hand side represents the energy in the center of mass of two gluons with minimal

(but non zero!) momentum :I_—Ec (ﬁc = %(0, L, +D,(£1,0,1),(£1,1, 0)) . To lowest

- 1 oy
order (Fig. 2a) the energy equals 2E, with E being the on-shell energy E = |p,| = A m/2.

There are 24 degenerate states with this energy, that do split to order g2 into levels labelled
x, with x running through the representation A¥, E*, TS, TF (there are no 4% levels in
this set of 2-gluon levels). The numbers ¢ , are given in Table I. The results are plotted in
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TABLE [

Values of the coefficient ¢,,x in Eq. (3.2). The
contribution from tree graphs is called ¢; x,
that from self energy graphs ¢; 4

{x1 C1,xe €1, xs+4.94
E* 32 0.06
E~ 32 0.
' 24 0.12
T 16 0.
T} —8+84/5 0.19
T3 0 0.
T 0 -0.62
E* -12 —0.06
T3 -8-8/5 | -—o0.10
AT —64 0.
A7 —64 -0.12

Fig. 1. Let us first note that ¢, o++ < ¢y g+ < ¢, 1,+ are all negative, so the theory would

2 2n. /2
become unstable if £ > T J
4z Cio+r+

taking the lattice spacing into account: the value of the A; *(0**) was used to fix
the coupling. The formula (3.2) with lattice spacing taken into account reads:

. Second, the formula (3.2) was used in Fig. 1 without

N . gz N gz 2
me = Coxt+Cyx "4:; + C2,x <'47) +0(g6) (32)

The mass m and the size L of the box are now measured in units of the lattice length. The

- -~ E
coefficient ¢, = 21 ,/2 o is only lattice dependent through the lattice dependence of

<

the energy E of an on-shell gluon:

(m2)= > ()

This leads to ¢, deviating a few percent from the value 2z./2 even for L = 4. The next
coefficient, ¢, is given by the two tree graphs and the self-energy correction in Fig. 1b.
A moments reflection will convince the reader that the self energy is finite when evaluated
on-shell and projected on the physical polarizations. Moreover it affects only the positive
parity states A7, T5 and E*.

The tree graphs alone give deviations from ¢, , of up to 359 at L = 4 (up to 10%
at L = 8) from the continuum values at L = oo shown in Table 1.

To order g* one finds for large L logarithmic terms that can be absorbed by the renor-
malization of g2. The log’s are the “short distance singularities”, the remaining L dependence
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(“finite size” effect) leads to a finite limit ¢, (“‘continuum limit”). To all orders in perturba-
tion theory one can perform this procedure and the result is:

g*(L)
W:Z%44)U@2 (3.3)

The second term is usually supposed to be negligible; however for L = 4 we just saw it
contributed up to 35%, 109 at L = 8. So trying to interpret the data in Fig. I without the
second term is dangerous, specially for L = 4.

Usually one picks the lowest mass x = 4 * (the 0" ") to give us a scale variable

mx .
as a function of
g+

my++ L = zy+ . Ideally one follows then the evolution of a mass ratio

2
diminishing couplingi—and growing L in such a way that z stays constant. In this
T

way the continuum limit is determined for this fixed value of z. Finally the large z limit
of the continuum limit is the ratio of the physical masses. Unfortunately the data do not

allow such an analysis. Instead, one tries to see an exponential fall off in m with = —

2 3

which does not separate out the finite size effects in the second term of (3.3).

4. Polyakov-loops, self-energies and the string régime

The energy E(L) of Polyakov-loops in the twisted box is calculable in perturbation
theory, in contrast to the periodic case. In Fig. 3 we have depicted graphs that contribute
to low orders. If the Polyakov-loop corresponds to the flux (e, e;, 3) = ¢ then

o def 21
D. = Fiexm is the minimal momentum the loop can have. This is due to the fact

that Polyakov loops are not periodic [10] except for the case that their electric flux e runs
parallel to the flux m. Notice that the Polyakov loops are not local so we are not in contra-
diction with statement (/) in the beginning of Section 2. It is the magnetic flux m — due
to the twist — that creates through the Poynting vector ¢ x m a new momentum scale p..
Therefore the graph in Fig. 3a is possible, where a gluon with momentum p, is exchanged;
in Fig. 3b the renormalization of that exchanged gluon is shown.

The result for Ez{L) is:

EzL) = |p.|+g1;:3(p)+ O(g*). (4.1)

|
| |
(a) (b)

Fig. 3. The graphs contributing to O(1) (Fig. 3a) and to O(g?) (Fig. 3b) in Eq. (4.1)
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Fig. 4. Comparison between periodic (“normal”) and twisted boundary conditions

The self energy IT (Fig. 3(b)) of the gluon is projected onto the normalized polarization
vector ¢ || e, and evaluated on-shell. To lowest order g2 this is a finite quantity and appears
also in the graphs in Fig. 1, i.e. it also contributes to the masses discussed in Section 3. In
fact the graphs in Fig. 1 can be viewed as correlations of appropriate combinations of

Polyakov loops.

E(L
Teper et al. have measured the string tension K(L) = —(L—) from a loop in the direction:

of one of the coordinate axes. According to Eq. (4.1), E(L)L depends only on g2, so v K(L)
behaves like —CI: when (4.1) applies (only for small L!). Surprisingly, this is in good agreement

with the p = 2.5 data (see Fig. 4), also the constant c fits well.

An interesting experiment would be the Montecarlo study of the ratio of three Po-
lyakov loops p;; one along the main axis, one along the diagonal in say a fixed z plane,
and one along a body diagonal [5] The first two can be perturbatlvely computed for
small box sizes; the third one has p, = 0 (since in that case ¢ = (1, 1, 1) = m) and 1ts
contributions come from semi-classical configurations in fact instantons with half mteger
topological charge [6]. Calling the energy and the length of p; respectively E{L;) and L; we
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have in a string régime (large boxes):

E, E, E; . .

— = — = — = string tension,

L, L, L,
whereas for small boxes the three quantities are known perturbatively, as discussed above.
Therefore this measurement [5] allows us to assess whether or not we are in the confinement
régime.

5. Discussion

The numerical results are crude and our theoretical predictions too. But the qualita-
tive agreement of the prediction and the MC result is encouraging. High statistics meas-
urements of the masses are underway. To know where we stand warrants a measurement
of the Polyakov loops as argued in Section 4.

From the comparison between values of masses and loops in twisted and periodic
volumes (see Fig. 4) one sees a fair agreement. We feel that this lends additional support
to the soundness of the MC approach. Determination of the fourth order coefficient ¢, in
equation (3.2) involves the calculation of fourth order scattering amplitudes: we found
the background gauge by far the most expedient way of calculating. The re'ation of these
S-matrix amplitudes to the discrete energy levels [9] is straightforward to work out. Compu-
tation of its counterpart ¢,, with lattice artifacts present, is a time consuming enterprise.

Last we would like to mention the inclusion of fermions. To eliminate the ambiguity
in the fermion ficld due to the colour twist one introduces in flavour space a twist that
counters the ambiguity due to the colour twist. In the case at hand we introduce an SU(N,)
group with an even number of flavours. For N, = 2 and our SU@2)m = (1, 1, 1) colour
twist we introduce the following boundary condition on the quark field g(x) (colour acts
from the left, flavour from the right):

9GZ+el) = 0, g(¥)oy.

This leads to a perturbative behaviour of the quarkfield precisely analogous to that of the
gluon; in particular the Fourier components of quark and gluon fields are identical. Thus
we find to order g2 a contribution coming fom the self energy of the gluon due to the
massless quark, which'is 4 of the contribution by gluons alone (see third column of Table I).
Therefore the influence of the quarks is little, at least to this order of perturbation theory.
The fourth order calculation is very feasible, and is on its way.

Discussions with A. Gonzalez-Arroyo, B. Berg, D. Daniel, J. Jurkiewicz, M. Luscher,
M. Teper and C. Vohwinkel are gratefully acknowledged. I want to thank Claudio Rebbi
and Larry Sulak for a stimulating atmosphere at the Boston University Physics Depart-
ment. Finally I wish to thank the organization of the Zakopane meeting for an
enjoyable stay.
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