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HOW DOES THE GLUON PROPAGATE?*
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In the present paper we would like to emphasize that the terms gauge invariance and
independence of the gauge choice have different meaning and to discuss the natural choice
of the gauge in QCD when the rising potential in included. To demonstrate the situation
we consider the infrared behaviour of the gluon propagator and the running coupling constant.

PACS numbers: 14.80.Er

1. Imtroduction

The discovery of the dependence of the f-function on the choice of the gauge [1, 2]
again attracts attention to the infrared behaviour of the QCD coupling constant and
of the gluon propagator, and in the literature statements arise of the type of approximate
gauge invariance of physical quantities in this connection [3]. Of course, the gauge non-
invariant propagator of giuons is the central problem of this talk; but before trying to
answer the question how does the gluon propagate? some details of the considered frame-
work must be given. '

The trivial fact that the quarks and gluons are not free particles in hadrons is the
reason for considering QCD for hadrons as bound states and develop the bound state
ideology for gauge theories.

The main difference between the parton QCD and the hadron QCD is the gauge
dependence of the bound state physics [4] which radically changes the definition of the
perturbation theory [5}.

2. Gauge dependence of the bound state physics

2 14

First, let us recall such notions as “gauge invariance”, “choice of a gauge”, and “change
of a gauge” (for simplicity we used some examples of QED to illustrate the main ideas).
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The gauge invariance of Lagrangian #(4) means that it does not vary under gauge
transformations of the fields A4 : £(4°) = #£(A4), where A° = g(A+3d)g.

The choice of the gauge is a specific gauge transformation g’ depending on the field
A, so that the new field 47[4]= g'[4] (4+0) [g'[A]]-* satisfies the additional condition

fATAD = 0. 0

The quantization of the fields and the Feynman rules are always formulated in terms
of a certain gauge: f; = 0, >, = 0, ... . I would like to draw your attention to some not
well known consequences of these definitions.

(i) The explicit solution of gauge condition (1) gives the physical variables 4 as
a functional on the initial fields 4; [6]. In QED this is the axial field

1
A[A] = (‘%—6»‘ 5‘%) 4, (49[4] =0),
3
or the transversal field
4T 1 T
Ai[A] = 5,j—a;a—26j Aj, (a‘A [A] = 0)

and so on. These functionals are invariant under gauge transformations of the initial
fields in the sense of the equation #£(4°) = £(A4). So, any gauge choice is a transition
Jrom the initial fields to the gauge invariant physical variables.

(i) The change of the gauge (from 47! to 4”2 is fulfilled by the substitution [71

Afz{Ah] = V[Ah] (Af‘+a)V-l[Ah}; ,pfz _ V[Af‘]gof'. (2)
All Green functions are invariant under operation (2)

¥ D = (VAW YT ATD

(if anomalies are absent). This substituton contains not only the modification of the
Feynman rules (i.c. the gauge change) but also the spurious diagrams induced by the
factor ¥[47*] (which do not follow from the initial Lagrangian).

On the mass-shell these additional diagrams do not contribute, and the invariance
under the gauge change takes place. But off the mass-shell the dependence on the gauge
takes place and this does not mean the. gauge noninvariance (any “gauge™ fis gauge
invariant as we have seen above).

For example, it is easy to see that the sum of the Coulomb field and transversal photon

propagator

T | 1
KR(J) = J(” J(2)+J(1) (ﬁij—q,-——z-qj) '__""2_ zJ.{,'Z!
€4/ 90—14
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coincides with the Feynman gauge propagator K¥
1

K*J) = —[IIQ - IOIP]

k do—4

1
+(@07$) @)~ @) @P) 75—
( ovo 00) ( i ”i qZ(qg qZ)

= K" +K"V)

up to the longitudinal term K" ~ (goJ§") (40787)—(g,J{") (¢,7§*) that disappears only
on the mass-shell (because of the current conservation law J§"?¢, = J{"?¢q). But off
the mass-shell for the Bethe-Salpeter equation the currents (J) turn into the vertices (I)
which do not satisfy the conservation law

I§"9ge # I'"?q;  KMI) # KF(I).

There are several papers [8, 9] devoted to the proof of gauge independence of an atom
spectrum. In these treatments, the Coulomb interaction is used in the rest frame with
the choice of the time-axis , = (1, 0, 0, 0). However, all the authors have not taken into
account that the vector 5, (contained in the Coulomb part of the interaction) indeed can
be arbitrary, and that a transition from one vector 7, to another 7, (r;,"2 = 1) is realized
by means of a special change of the gauge.

It is easy to check that the usual Lorentz transformation (P — P’) or the special
gauge change (n — #’) break the dispersion law (i.e. P'2 # M3) [10]. The dispersion law
is invariant only under a combination of the usual Lorentz transformation (P — P’) and
a special gauge change (7 — n’) satisfying the parallelism of the time-axis to the total
momentum (n, ~ P,;n, ~ P,). This combined transformation has been pointed out
first by Heisenberg and Pauli [11]. Thus, we have seen that the dependence of bound state
calculations on a gauge not only exists, but even is necessary to provide the relativistic
covariance (unlike the dominating belief that the relativistic covariance of bound states
is realized by transition to the covariant gauge (8, 9]). The parallelism of the time-axis and
the total momentum is equivalent to the Markov-Yukawa relativistic description of bilocal
fields [12]. According to Markov and Yukawa the bound state as a bilocal field M(x, y)
is a Lorentz group representation if there is the “redundance” of relative time [13]

G, x+y
z”—X—M(x, y)=0: (zp =X~yu; X = —~2——) 3)
"

On the level of atom description in QED the relative time is implicitly identified with
the time of quantization of gauge fields, i.e. the temporal component of the gauge field
Ay = (n+ A) where », is defined as an eigen-vector of the bound state total momentum
operator

d ,
NuM(x, y) ~ o M(x, y) = P,M(%, y). @

B8
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This means that the Coulomb potential moves with the relativistic atom, the wave
function of which satifies the Schrédinger equation

m+m d*q* o
=2 )V +Ma—my—m) [ oY) = | 75 3 ¢(¢") ®
m,m, ; 2 |p—q|
with respect to the transversal relative momentum
9 =q,—n0a-m; P,=Ma,;ni=1). (6)

3. The minimal quantization scheme

The Feynman rules in the radiative gauge applied to the atom physics and the Heisen-
berg-Pauli relativistic group can be justified by the minimal quantization scheme of gauge
field theories which has been formulated in Ref. [14] (see also [4]) as the following two
axioms:

(i) The axiom of the choice of physical variables by the projection of the Belinfante
energy-momentum tensor

.
T = FuaF st $y,[i0,+ eA Ty gl + 7 0:[00v),

r:v = ';— [)’l’yn])’v - guv'yl'_ g:}’;‘ (7)

upon the Gauss equation solution for the temporal component Ay = (i * A): 8L/0A, = 0.
(ii) The axiom of quantization of the minimal set of the physical variables by the
diagonalization of the Belinfante Hamiltonian T,.
In QED the first axiom expresses the tensor (7) straigtforward in terms of the trans-
versal variables A”, y” as a nonlocal gauge invariant functional on the initial fields

T, [Au Ay = <;;§ aiaOAi+j0>] = T“,[A;-I[Ai], 'I’T[A’ vl
AT[4] = V[A] (4i+3)V ™ [4],
v'[4, ] = V[4ly,
V[A] = exp (62 aA,) ,

A = ieA. )

The usual Lorentz transformation of the initial fields in the Gauss equation leads to
the Heisenberg-Pauli transformaton of the transversal functional

w4+ 00y, v+50v]—y[4,, v] = S0y +iedy” 0]
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where ¢, are the transformation parameters

1 0
Sy = Lexi0,—t0) +eyore]; A =2 7 [aoA;cr'*‘ ‘5‘2‘]0] . (10)

The second axiom leads to the same transformation law (9) for the quantum fields
inU dx(Tyox,— Toub), 'tpT] = 5f_wT+ieAwT.

In the minimal quantization scheme the relativistic transformation of the classical
variables (8) coincides with the quantum ones on the operator level.

This coincidence is the main difference between the minimal quaatization and the one
in the usual radiative gauge. Another difference is the phase physics due to the infrared
zero modes in the exponent of the factor V[A] in Eq. (8).

The same explicit construction of the physical variables for non-Abelian theory
[6, 14, 15] leads to the topological degeneration of these phase factors and to a confine-
ment mechanism as a destructive phase interference,

The third difference from the conventional approch is the recognition of the dependence
of the bound state physics on the time-axis of quantization 5, and of the importance of
one more empirical bound state principle — the Markov-Yukawa choice of the time-axis
(3), @.

The minimal quantization with the Markov-Yukawa choice of the time-axis #, does
not change the S-matrix with the asymptotic free states of elementary particles (as this
S-matrix does not depend on gauge and 5,) but these empirical axioms are necessary
and really are used in the atom physics independently of the validity of perturbation theory.

4. The gluon propagator in hadron QCD

The minimal quantization of chromodynamics |4, 14] up to the phase (confinement)
phenomenon [6, 15] is reduced to the explicit gauge invariant construction of the Schwinger
operator quantization of the non-Abelian theory [16] with the Hamiltonian

#(g°D) = { dx [} (E{(®))* +3 (Fi(x)* +3(x) (i1, Vi + m°)g(x)]
+3 | dxdyJi(x) [g*D™(x— y|4)]Js(y) +nonlocal Schwinger terms. (11)

Here

“a

A .
V= 6k+gAZE s Fiy = 0,A7—0,A] + g™ A}A;

Aﬂ
Ti=q" 5 QR MEMAG 347 = 0F] = 0; 12
g is the coupling constant and the function D**(x— y|A) satisfies the equation

1 c
[(V;a‘) 7 (Vﬁ;)T D¥(x—yl4) = 8(x~y)o” (13)
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(where Vi = 6”9, + gf** A?). The Schwinger terms are definéd from the Lorentz covariance
condition [4, 14, 16].

We shall consider the Hamiltonian (11) as a basis for constructing of QCD for hadrons.
Just this Hamiltonian (unlike the QED one) contains a new type of the infrared divergences
at zero three-dimensional. momenta k2 = 0.

The asymptotic freedom formula

2 -1
«(Q?) = [ﬂ log(%)] (14)

cannot remove these static divergences and becomes the phenomsenological supposition.
The removal of these divergences has not only a purely mathematical (theoretical) character.
(Recall that in QED the solution of the infrared problem is accompanied by including the
phenomenological parameter of the type of the dimension of a device).

One thing is known: these static divergences are related to the modification of the
static Coulomb potential at ling-distances (or at k? ~ 0) and to the physical dimensional
transmutation. Instead of the asymptotic freedom phenomenology let us take the form
and the parameter of the modification from the experiment: i.e: the heavy quarkonium
spectroscopy that definitely points out the rising potential [17]. (This potential can be
forced by the nontrivial boundary condition of the Gauss equation [15] like Aycp, appeared
in the boundary condition of the renormalization group equations).

We would like to draw your attention to the fact that the rising potential ansatz

H(g*D(x|4)) » H(Va(x)+2”D(x]4)) 15

removes all infrared divergences in a perturbation theory in the coupling constant g2 {5, 18].
This hadron QCD perturbation theory contains in particular the old parton QCD, the
nonlocal chiral Lagrangian for light quarks, and the potential model for Jfy spectroscopy.

We should like to comment on some details. of the hadron QCD (QCD,). We choose
as a test potential the oscillator one with the dimension parameter ~ 300 MeV. In the

Fig. 1. The solid lines are the numerical solution E(p) to the Schwinger-Dyson equation [5] for different
bare quark masses m° Here dashed lines described the free case Eq(p) = Y pr+(m°)?



143

g

Fig. 2. The solution for the gluon spectrum, where the dashed and solid lines correspond to-the fres and
bounded (iri a_hadron) gluén, respectively:

lowest order in coupling constant the rising potential leads to ‘the constituent. mnsses
of light quarks and gluons and does not change the heavy quark masses [18, 19] (see Figs.
1, 2). The QCD, perturbation theory is formulated in terms of the modified gluon and
quark propagators which in the explicit form depend on the total hadron momentum P,.

For large transversal momenta |g*| > 300 MeV_these modified propagators turn into
the parton ones of the usual QCD without confinement properties.

Let us illustrate the above remarks only in the gluonic sector and try to give an answer
to the question which is the title of our talk, of course, in our understanding of gluons
as constituent particles of hadrons.

In the lowest order in g2, we obtain the following Hamiltonian

H = §dx [} (Ei(x))* +7 (0:45(x)°]
+5 7 | dxdyEi(x)A}(x)Valx— DES(»)A). (16)
For simplicity we consider the oscillator potential [10]
Va(r) = Vor?, ¥V, = (234 MeV)?, an

The fields Ef and Af have the following decomposition over creation and annihilation
operators ab(®)

dk
Ej = | 2 {exp [i(c k)t —kx)]eja" (k)
—exp [~i(w(k)z+kx)]e;ag(—)(k)}’
dk 1 )
Ag = IW (k) —— {exp [i(w(k)t— kJC)]efj )

+exp[ — (@)t +kx)]ea ()} (18)
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Here k;é) = 0, &¢} = 6,,—(kk;/k?), k = |k|, the operators a*) satisfy the commutator
relations [@27(k), a**)(g)] = 6%, 0(k—q), [@F(k), a*)(g)] = 0, and the single-
-particle energy w(k) is defined as the matrix element of the Hamiltonian (16) over the
one-gluon states |b, r, k), with the quantum numbers b, r and momentum k

K, vy K HIb, 7, kY, = o(k)3(k—K )5 5™ (19)

with [b, r, k) = al*)(k) |0). After the substitution of (18) into (16) expression (19) can
be rewritten as the following equation for w(k)

k) K 1 do() P 1
— =VoN | —— —=| = =} = a(k),
T {[2(0(]:) ax | e e 20)
where the left-hand side corresponds to three terms of Hamiltonian (16). To obtain the
solution of (20) two numerical methods are used: the “Shooting” [20] and the Runge-

~Kutta-Gill [21] methods Both give similar results (the solution is shown in Fig. 2).
In dimensionless variables the asymptotic behaviour is the following

— 2
w(k) - iz (k = 0);

ak) >k (k- o) 1)

(8- )

Thus the gluons effectively acquire the constituent mass depending on the momentum
(my(k?) = Vo (k)—k?) and m(0) = co.

We see that the rising potential leads to the appearance of a mass for massless color
particles, i.e. it has infrared regularizing properties. And it is easy to see that the Green
function of the transversal gluon

kk 1
ot ) = (30 2 o -

with

N " A " N L i FORTY Py P
1 i S, 10 Q(Gev)” = 50 100

Fig. 3. The dependence of #5 on the momentum Q and parameter A. Dashed lines correspond to the asympto-
tical freedom formula. The solid line corresponds to the modified formula with a™od(0) = 0.24 when
Ne =0, No =3 and 4 = 110 MeV
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vanishes in the region of small X and changes into the standard parton Green function
for large momenta k (k > 300 MeV).

The modified gluon propagator also modifies the running coupling constant (see Fig. 3)
in the region of small transfer momenta [5, 18]. The new running coupling constant has
no singularities in the whole region of transfer momenta and is smaller than o™ ~ 0.2,
At large momenta it coincides with the asymptotic freedom formula (14). QCD, describes
the glueball masses in the region expected today [18].

We have shown that for the light quarks the action turns into the chiral Lagrangian
in the low-energy limit which is almost independent of the form of the potential [22].
The latter explains the fact of existence of a lot of models of the low-energy hadron physics.

So, the rising potential leads to constituent quark and gluon masses and to the chiral
Lagrangian, i.e. to hadronization, but not to confinement [6].

5. Discussion

There is a lot of papers, devoted to the gluon propagator behaviour. They contain
contradictory results. For example, the 1/k* [23] behaviour is avoided in the axial gauge
studies [24]. Moreover, G. B. West has proved that the analyticity properties make it
impossible for the g*” term to be more singular than 1/k2 in the infrared region [25]. His
conclussion is the following: this behaviour is obviously not sufficient to infer an area law
Jor the Wilson loop and it is not possible to prove confinement from the IR behaviour of
the gluon propagator in the axial gauge [25].

N. Brown and M. R. Pennington [26] have used a covariant gauge (the Landau gauge)
to study the behaviour of the gluon propagator. It was found, the gluon propagator was
strongly enhanced like 1/k* at low momenta. The price to get this result is a plus prescrip-
tion not determined by the theory but put in by hand. The justification here lies in the physi-
cally meaningful result (area law) and in elimination of infrared divergences [26).

In this paper we have shown that there exists the unique gauge invariant method
of describing gluon and quark propagators in hadrons. With respect to the total momentum
of a hadron the gluon interaction is separated in the static (i.e. Coulomb-like) potential
and in the quasi-particle transversal excitations (i.e. transversal gluons). We remove the
static infrared divergences in the QCD perturbation theory by the modification of the Cou-
lomb potential in accordance with the experimental data on J/y.

This modification of the nonphysical (nomparticle) part of the theory leads to the
constituent mass of the transversal gluon. The gluon propagator has the usual analytic
properties and moreover, for large transversal momenta it turns into the parton propagator
of the standard QCD perturbation theory.

In contrast with West’s result [27], we have found that the rising potential does not
lead to confinement which in our opinion has topological character [6].

One of us (W. Kallies) would like to thank the organizers of the School in Zakopane
for kind invitation.
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