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AN INTRODUCTION TO TOPOLOGICAL YANG-MILLS
THEORY*

BY P. vAN BaaL**
CERN — Geneva
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In these lecture notes we give a “historical’”’ introduction to topological gauge theories.
Our main aim is to clearly explain the origin of the Hamiltonian which forms the basis
of Witten’s construction of topological gauge theory. We show how this Hamiltonian arises
from Witten’s formulation of Morse theory as applied by Floer to the infinite dimensional
space of gauge connections, with the Chern-Simons functional as the appropriate Morse
function(al). We therefore discuss the De Rham cohomology, Hodge theory, Morse theory,
Floer homology, Witten’s construction of the Lagrangian for topological gauge theory, the
subsequent BRST formulation of topological quantum field theory and finally Witten’s
construction of the Donaldson polynomials.

PACS numbers: 11.15.Tk

1. Introduction

Topological quantum field theories are field theories that have at most a finite number
of degrees of freedom (in particular there are no propagating physical states), so a legitimate
question is then, why one should be interested in them. Probably a more than adequate
justification comes from the way these theories were first discovered by Witten {1] in the
context of Yang-Mills gauge theories. This justification is, however, mathematical in nature
and is a prime example of the extremely fruitful interactions between physics and mathe-
matics. Crudely stated, because there is no dynamics, the quantum field theory can only
be sensitive to invariants of the basis manifold on which the theory is defined. As we will
see, a topological quantum field theory can be defined as a field theory on a smooth mani-
fold which is independent of additional structures, such as a metric, on the basis mani-
fold. Thus appropriate observables will have expectation values independent of the metric,
and will hence give invariants. As will be discussed in the last Section, for Yang-Mills
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gauge theory over a four manifold, these will lead to the invariants considered by Donaldson
[2], who used them to distinguish different differential structures. Hence these are called
differential invariants, although one also encounters the name topological invariants (which
are of course, strictly speaking, weaker).

By now, many types of topological field theories have been constructed [3, 4]. There
are two reasons why some of them might be interesting from the physical point of view.
One argument by Witten [1] is that these theories have general covariance built in without
having to integrate over the space of all metrics. It is this integration over all metrics which
forms the obstacle to finding a quantum theory of gravity. The hope [1] is now that one
might be able to find a suitable topological quantum field theory in which this general
covariance is spontaneously broken, and a dynamical theory which includes gravity might
arise. However, one should realize that since topological field theories have more or less
by definition no dynamics, it will be very hard to find a mechanism for this spontaneous
breaking of the general covariance, unless one “tinkers by hand” with the theory. The
other reason for its physical significance lies in the beautiful connection of the pure Chern—
—Simons theories in three dimensions with the conformal field theories in two dimensions [4].
Hence, one might envisage this as a means to classify conformal field theories [5]. Whether
this will give a complete classification is not clear yet. From the mathematical side, this
connection between three and two dimensions is relevant for the knot invariants (Jones
polynomials) {6]. The description of knots in three dimensions is more natural than its
traditional two-dimensional formulation. This higher ventage point might resolve also
many riddles related to the connection between Yang-Baxter equations, braid groups and
conformal field theories [7]. It is therefore not surprising that this corner of topological
quantum field theories is attracting most attention. However, we will concentrate ourselves
in these lecture notes on topological Yang-Mills theory, because this is where the develop-
ment started.

It is maybe instructive to sketch the history of topological Yang-Mills theory. The
development of these ideas grew out of the study of harmonic forms in increasingly complex
situations. Traditionally, harmonic forms have played a very important role both in mathe-
matics and in physics. For example in three dimensions, they form the solutions to the
Laplace equations, which are essential in the study of electrostatics and as we will show, the
solutions to the Maxwell equations can be seen as harmonic 2-forms. From the mathematics
point of view, harmonic forms are important for the study of topological invariants. Hodge
theory relates the number of independent harmonic p-forms to the cohomology H?(M) of
the compact and smooth manifold M, which in turn is dual to the homology H,(M). The
homology can be defined for any orientable manifold by a topological construction. We
will review homology and De Rham cohomology in Section 2, to make these lectures more
or less self contained. The reason is that (co-)homology is the central theme in all these
developments. In five different settings we will introduce operators whose square is zero
(they are called (co-)boundary operators). This is all one needs to define a (co-)homology.

Morse theory gives another way of studying the topology of a manifold, by studying
the critical points for a generic function (called a Morse function) on the manifold M. For
example, one can easily determine the Euler number of a manifold from Morse theory,
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but in general it gives only inequalities for the Betti numbers B,, where B, is the dimension
of H?(M) (or by Hodge theory the number of harmonic p-forms on M). This is where physics
re-entered mathematics, due to Witten’s [8] analysis of supersymmetry breaking. Especially
his study of a supersymmetric non-linear sigma model led to a formulation of Morse theory,
based on studying harmonic forms constructed from an exterior algebra intertwined with
a Morse function. This exterior algebra was basically equivalent to the supersymmetry
algebra (in the zero-momentum sector) and the harmonic forms are the zero-energy states
for the Hamiltonian. The Witten index, which is a measure for supersymmetry breaking
(to break supersymmetry the Witten index needs to be zero), can thus be shown to be the
Euler characteristic. Topology was therefore in the way for supersymmetry breaking.
However, Witten [9] realized that his formulation of Morse theory, which was based on
tunnelling in supersymmetric quantum mechanics, was a powerful mathematical tool.
Instead of bounds (weak Morse inequalities), it allowed one to obtain the Betti numbers
directly from Morse theory (related to the strong Morse inequalities). This was based on
constructing a homology based on tunnelling, as we will review in some detail in Section 3.
Another instance where physical questions have strongly stimulated mathematical develop-
ment has been the study of instantons [10]. These are solutions to the (anti-)self-duality
equations for non-Abelian gauge theories on four manifolds. Many powerful mathematical
ideas were bundled in algebraically constructing the set of all solutions on $* for a given
topological charge k (Pontryagin or Chern class), called the moduli space .#,. This is the
Atiyah-Drinfeld-Hitchin-Manin [I1] construction. The instanton moduli spaces were
used by Donaldson {2] to construct powerful differential invariants for four-manifolds.
Four-dimensional manifolds are particularly notorious for their difficulty in classifying
differential structures. For example, in five or more dimensions, fixing the topology will
fix the differential structure up to finitely many possibilities (see for a review [12]). Note
that the self-duality equations, in a sense, generalize the study of harmonic two-forms and
it is therefore natural (maybe with some hindsight) that the added non-Abelian group
structure will lead to more refined invariants.

Since in the Hamiitonian formulation of gauge theories, one has a three-manifold
as a basis manifold, Floer (after Taubes) [13] asked himself whether one could similarly
construct invariants for three manifolds. His answer was affirmative, beautifully combining
the Yang-Mills gauge theories with Witten’s analysis of Morse theory. We will outline
this development in Section 4. Basically, it amounts to considering the exterior algebra
on the infinite dimensional manifold of gauge equivalence classes of connections (gauge
potentials) on the three-manifold. Then he intertwines this, as in Witten’s finite dimensional
analysis, with a Morse function(al), for which he chooses the Chern-Simons functional.
The resulting homology amounts to studying the zero-energy solutions of a ‘“‘supersym-
metric” Hamiltonian, whose bosonic part is nothing but the pure Yang-Mills Hamilto-
nian. Not surprisingly, the tunnelling analysis in this infinite dimensional formulation
of Morse theory is precisely described by the (anti-)self-duality equations. For a review
see also [14].

Atiyah and Donaldson now realized that there was a connection between this Floer
homology and the Donaldson invariants, for particular four-manifolds. Since the Floer
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homology is naturally connected to field theory and since instantons also play a natural
role, Atiyah [15] asked the question whether it would be possible to find the Lorentz invar-
iant formulation of the Floer Hamiltonian, that is to find a Lagrangian, whose Hamilto-
nian will be the one which comes from the Floer theory. The euclidean formulation on
closed four manifolds is then likely to lead to Donaldson invariants. This question was
answered by Witten [1] in the affirmative (as well as [4] Atiyah’s question whether there
was a three-dimensional field theory, which would lead to the formulation of the Jones
polynomials). Thus were born topological field theories. One thing is for sure, despite the
fact that many details will still need to withstand the test of mathematical rigour, it will
have a large impact on various areas of mathematics. The excitement is based on the fact
that Witten’s work gives explicit formulas for Donaldson and Jones polynomials, and
especially in the latter case it provides many clues for generalizations.

In Section 5 we will discuss Witten’s construction of the topological Yang-Mills action.
It was later realized [16], that there was an underlying BRST symmetry and that one could
view Witten’s Lagrangian as coming from the gauge fixing of an action which is given

1
purely by the topological charge (g'i j Tre(F A F)) which is obviously independent of the
T
M

metric. We also. mention the underlying equivariant or basic cohomology [17] which can
be formulated in terms of this BRST or Slavnov symmetry [18]. Finally in Section 6 we
will consider Witten’s construction [1] of the Donaldson polynomials. We will not attempt
to describe Donaldson’s [2] original formulation.

These notes are mainly intended for a readership of physicists. We attempt to use as
much as possible physical intuition to outline the various developments, in order to hide
the author’s inadequacy in achieving mathematical rigour. Nevertheless, he hopes that
these lecture notes will contribute, not only to his own, but also to the reader’s understand-
ing of this new field at the borderline between physics and mathematics.

2. De Rham cohomology and Hodge theory

As the best known example of cohomology we discuss De Rham cohomology, denoted
by H?(M, R), where M is an n dimensional manifold and p runs from O to n. (The R stand
for the real numbers, but other types like integer cohomology will not concern us here).
The manifold actually needs a differential structure to define De Rham cohomology, but
the invariants will turn out not to depend on this structure. We can now define the space
of smooth p-forms A, where we recall that a p-form w can locally be written as:

O = @y py,., 050 A dXZA LA (1)

The indices i; run from 1 to », @y, ;,,...;, is antisymmetric in its indices and we use Einstein’s
summation convention throughout this paper. The space of 0-forms are simply the set of
all (differential) functions on M and the volume form for M is an example of a n-form.
We can now introduce the exterior derivative d: A, - A, . through the following local
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definition:

0w, ;... i i
do = -a—)“a'%-‘—‘!dxj A dx't A ... A dX'’. @

For later purposes we rewrite this in an operator form as:

dw

do = a* —-, 3
where the operator a* is defined locally as:
a*o = dx’ A . “)

The exterior derivative d is called a coboundary operator (for reasons which will become
clear shortly) and it satisfies the important property that it squares to zero: d* = 0. This
implies the following crucial relation

imd,,_, < kerdl,, (5)

where im d is the image of the operator d, i.e. im d|,, , = {we A,jdhe 4, ,, o = di}
and ker d is the kernel of the operator 4, i.e. ker d|,, = {w € 4,/dw = 0}. The following
definition of De Rham cohomology will therefore make sense:

HP(M,R) = kerdfimd n A, (6)

In the future, as in Eq. (6), we will assume the space on which d acts implicitly defined.
Thus H?(M, R) is the set of closed (dw = 0), non-exact p-forms (@ cannot be written as
di). The Betti numbers B,(M) are equal to the dimension of H?(M, R), that is the number
of independent closed, non-exact p-forms. An example for a well-known topological
invariant is the Euler characteristic:

(M) = Zo(~l)"B,(M)- (M
=

The best way to see that the Betti numbers are topological invariants is to note that
the De Rham cohomology H?(M, R) is dual to the real homology H,(M, R), which can be
defined purely topologically (provided M has an orientation). We will be a bit sloppy in
its description and refer the reader to standard mathematics textbooks for more details on
singular or simplicial homology. One considers the so-called cell complex C, of p-dimen-
sional oriented subspaces (cells) embedded in the manifold M. They can be formally added
and multiplied with real numbers. Multiplying with — 1 will change the orientation. Two
cells can join into one if their orientations match along the boundaries. We can now define
the boundary operator d: C, - C,_, (taking the boundary of a set reduces its dimension)
which squares again to zero (0> = 0), since the boundary of a boundary is empty. Complete-
ly analogous to the De Rham cohomology one can now define the homology by:

H/M, R) = ker 3im 3 n C,, (8)
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which is called the set of p-cycles, that is the set of closed p-dimensional cells, that are not
the boundary of some (p+ 1)-dimensional ceil. Note that in homology J decreases the
grading by one whereas in cohomology d increases the grading by one. This is of course
a more or less artificial distinction between homology and cohomology. However, there
is a more precise relation between cohomology and homology, which shows that they are
actually dual to each other and that the exterior derivative is the dual of the boundary
operator. This is why the exterior derivative is also called a coboundary operator. The
duality is established with the following bilinear form:

H, (M, R)yx H*(M, R):(y, w) » § v € R. %)

To show that this is indeed a proper map we have to show that § w does not change if we

?
add the boundary of a (p+1)-cell « to y or if we add the exterior derivative of a (p— 1)-form
A to w. This follows by Stokes’ law from the fact that w is a closed p-form (dw = 0) and
y is a closed p-cell (0y = 0). To be more precise, Stokes’ theorem for integration yields:
$o==¢do=0 and §dl—§}.—0 (10)
ox a oy
which is easily seen to prove the above statements. One can also show that the bilinear
form is non-degenerate, which establishes the duality between homology and cohomology
and shows that the Betti numbers are topological invariants. Stokes’ theorem also illustrates

that the boundary operator is dual to the exterior derivative with respect to the bilinear
form defined in Eq. (9), i.e. §dw = §w

Before we discuss the Hodge theory we introduce a termmology which will be of use
later. Two p-cycles 7, , are called homologous if their difference y, —y, is the boundary
of a (p+ 1)-dimensional cell, which we illustrate in Fig. 1. As we have just seen, the integral
of a closed p-form over y, equals its integral over y,. That is, the integral only depends on the
homology class of the p-cycle.

To discuss the Hodge theory, which basically states that B, is the number of harmonic

¥
£} ?

{1

Fig. 1. We illustrate here that the 1-cycles ¥, and y, are homologous. This is because cutting the figure

along both of these curves we get two 2-cells. For each of these it is true that the boundary of the 2-cell

is +(y,—y2) (the simplest 2-cell with this property is the tube). However, y; and y, are clearly not
homologous
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p-forms, we first have to define what is meant by a harmonic p-form. For this we need
a metric g;; on the manifold M, which is needed to define the adjoint d* of d. If we talk
about an adjoint operator, we need an inner product on the space of p-forms. This inner
product is defined with the help of the Hodge « operator » : A, - A,_,, which in local
coordinates reads as follows:

1 N . .
= o)t @B i iseeino XA o A dXTTR, (11)
Note that we used the metric to raise the indices for w. The inner product is now given by:
A% 4,12 f) = <&, B> = [ a A #P. (12)

Since a A * B is a n-form the integral is well defined and the adjoint of d follows from:
{a,d*B) = (da, B>, aed, Pfed,,. (13)

We have the following useful properties, which involve the Hodge * operator on p-forms:
d* = —(=1)"" Dysds and &> =(-1)H""P (14)

It is now easily verified that in local coordinates one finds the following expression
for d*w, when o is a p-form:

P
i 1ty 0P,y Ny i
d*o = — (—g -’——;3—,—’;1)61 Ao AdXY A LA dX, 15)
X
j=1

where the hat over x/ means that this differential should be eliminated from the wedge
product. Again for later purposes we can rewrite this in an operator formulation:

¥y = g
d*ow = ~a Pk (16)
The d' act on a basis element dx"* A ... A dx' € A, by simply leaving out dx' from this
wedge product, after anti-commuting dx* to the left (giving zero if dx' does not occur).
The d'(x) form a basis for the tangent space T, M and act by exterior multiplication on the
cotangent space Ty M, for which a*(x) forms the basis dual to @'(x). We leave it to the
reader to verify that these operators satisfy the Dirac algebra:

{d',a’} = {a*, a*} =0 and {d' a}} =0\ an

In the next Section we will indeed see that it is natural to call &' creation and a*’ annihila-
tion operators. After all this preparation we are ready to define harmonic p-forms as those
p-forms w which satisfy the Laplace equation:

(dd*+d*d)e> = 0. (18)
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One casily verifies that if @ is a 0-form, Eq. (18) indeed reduces to the normal (covariant)
Laplace equation, we are all so familiar with. In particular on a flat space, where the metric
is constant, using Egs. (3), (16), (17) one finds dd*+d*d = 8*/dx].

To prove the Hodge theorem, we first note that

A, = ker d ® im d*, (19)

since do = Oiffforallx € 4,,, we have {(dw, ) = 0, which is equivalent to {w, d*a) = 0,
or o € (im d*)*. Using now the definition of H?(M, R) in Eq. (6) we find the following
direct sum decomposition for A4,:

A, =imd ® H’(M, R) ® im d*. 20)

This then implies that H?(M, R) lies in the intersection of the orthogonal complements
ofim dand im d*, i.e. HY(M, R) = ker d n ker d*. Hence it remains to prove that w is har-
monic iff dw =‘d*w = 0, but this follows from the fact that if w is harmonic, one has
0 = {w, (dd* +d*d)o) = {d*v, d*w)+{dw, dw}, and from the fact that {a, &) is always
strictly positive, except for o = 0.

Thus we have the interesting result that although one had to define a metric and
a differential structure on the manifold M in order to define harmonic forms, the number
of harmonic forms is actually independent of the choice of metric and differential structure,
they are topological invariants. Harmonic forms occur naturally in physics, as we mentioned
in the introduction. There we promised to show that the solutions to the Maxwell equations
are equivalent to harmonic 2-forms. The Maxwell equations are defined in terms of the
curvature F,, on four-dimensional space-time, where E; = F; is the electric and
B; = &;F,/2 the magnetic field. These Maxwell equations are equivalent to d*F =0,
where the 2-form F is given in local coordinates by F = F, dx* A dx’/2. On the other hand,
we know that we can write the curvature in terms of a connection l-form A:F = d4,
where A = A,dx" and A, is called the scalar potential, whereas 4, is called the vector
potential in electrodynamics. This fact is easily seen to imply that the curvature, or field
strength, F satisfies the constraint of the Bianchi identities dF = 0. We have just seen that
dF = d*F = 0 indeed implies that F is harmonic.

3. Morse theory and supersymmetric quantum mechanics

In this Section we will discuss Morse theory as an alternative way to study topology
of a manifold. In particular we will consider Witten’s {9] formulation of Morse theory to
prepare us for an attempt to understand Floer homology [13]. For a more detailed discussion
of the mathematical aspects- of Morse theory we refer to the literature [19].

If h: M — R is a generic function with isolated critical points P,, P,, ..., P,, where
a critical point is defined as a zero of the gradient vector field (i.e. dA(Py)/dx, = 0 for
k =1,2,...,n = dim M), then the Morse index p(P,) of a critical point P, is the number
of negative eigenvalues for the Hessian of & evaluated at the point P, (the Hessian for
a function 4 is given by the matrix 9%A(x)/0x,0x;). We define M, as the number of critical
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points with Morse index p. The weak Morse inequality states the following result [19]:
M,> B,
One can prove stronger versions of the Morse inequalities [19],

Y (M,=B)* = (140 Y 0, 0, 0. @1
p=0 P=0

They will not concern us here, but as an illustrative example we give a useful corollary
of these inequalities. Namely, by substituting = —1 one gets an equality for the Euler
characteristic (compare with Eq. (7))

2(M) = io (—1)M,. 22)

It is instructive to illustrate the topological nature of this formula in an example. In Fig. 2
we have sketched a two-dimensional manifold M with two holes, such that its Euler char-
acteristic is y(M) = 2—2H = -2, where H is the number of holes (or handles). Let us
choose for & the height function (the gravitational potential) with respect to the horizontal
plane. Then there are 6 critical points, of which the lowest one is obviously stable and has
Morse index 0, the highest one is unstable with Morse index 2 and the remaining four
critical points are saddle points, with one stable and one unstable direction, hence these
have Morse index 1 (see Fig. 2). Therefore one has the result: ) (—1’M, = M,—M,
4

+M, = 1-4+1 = —2, which is indeed the Euler characteristic. We can now give a rule
of thumb which shows that it is indeed a topological invariant by pressing with our thumb

p=2

=
“:
p=1

u=t

u=0}

Fig. 2. Here we illustrate Morse theory, where 4 is the height function. We indicate the critical points and
their Morse indices u
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u=t

u=0

Fig. 3. The same as figure 2, but now deformed by pressing with our thumb at the maximum. This illustrates
that the Euler characteristic, calculated by using Morse theory will not change under this deformation

at the maximum. Generically, this will create one additional local minimum and one

additional saddle point (see Fig. 3). Therefore My, =1, éM, =1, é6M, = 0, but

3¢ (—1)’M,) = 0. It could happen that we press our thumb in such a way that the maxi-
14

mum will become degenerate with the saddle point, i.e. the maximum is obtained along
a closed curve (however, try it and you will see that this is very hard to arrange, generically
this will therefore not occur). There is so-called degeneiate Morse theory which is able
to deal with these situations. However, typically, this degeneracy is unstable against small
perturbations, and for things to make sense topologically, definitions should not depend
on these perturbations. Thus the only situation where one really has to worry about degen-
erate critical points is when there is a symmetry (for example axial symmetry along the
vertical in Fig. 2) and perturbations are required to respect the symmetry. In that case
one talks about equivariant Morse theory, this is however all we will say about it.

As we have already hinted at when we introduced the operators a' and a*/, there is an
underlying supersymmetry in the exterior algebra. After all, the exterior derivative squares
to zero, as does a supercharge Q, since it is an anticommuting object. Q changes the fermion
number, whereas d changes the grading (defined by the p-forms). This then implies that
one can identify p with the fermion number F. To make things more precise we have the
following identifications:

(=1’ (=D
dHQI’
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d*HQZ = Qrv
dd* +d*d < 2H = {Q,, 0,}. (23)

Furthermore, since B, is precisely the number of zero-energy p-forms, and since due to
the supersymmetry, non-zero energy eigenstates will always occur in pairs of fermions
and bosons, the Euler characteristic is exactly equal to the Witten index:

¥ (~1)B, = Tr (= 1)"). 24)

This connection is more or less the reason Witten [9] discovered his formulation of Morse

theory in terms of the exterior algebra, which will occupy the rest of this Section.
Motivated by removing degeneracies in a study of the Witten index for supersymmetric

sigma models [8], Witten introduced the following modification of the exterior algebra:

d—d, =e "™ d* > d* = e, (25)
One can then define B,(¢) as the number of harmonic forms for the exterior algebra d,; i.e.
B,(#) = dim {ker (d,d; +d}d,) n A,)}. (26)

Clearly, B(t) will depend continuously on ¢, however, B,(t) is a discrete function, hence
it is independent of ¢ and one can therefore find B, = B,(0) by studying the vacua (zero-
-energy states) of the Hamiltonian

H, = 3 (dd{ +dd), 27

in the limit of # — co. This has a tremendous advantage, since we will find the wave functions
in this limit to be highly peaked around the critical points of the Morse function A, such
that in the lowest non-trivial order the wave function is a p-form with a harmonic oscillator
type coordinate dependence, centered at a critical point. This immediately implies that in
this approximation (which will neglect tunnelling) the number of vacua, which are in 4,
equals precisely M. The higher-order analysis can only have the effect of lifting the energy
of some (or all) of the states thus constructed. This gives Witten’s very simple proof of the
weak Morse inequality, B,(= the number of exact zero energy states) << M, (= the number
of approximate zero energy states).

Let us now make these considerations more precise by calculating in some detail
H, from the exterior algebra and by performing the large ¢ asymptotic expansion for the
eigenstates of this Hamiltonian. In the next Section it is this part of the analysis which*
allows generalization to the infinite dimensional context of the Yang-Mills configuration
space, connected to the Floer homology. Let us first remind ourselves of the operator
expressions for the. exterior algebra:

d . 0P ;
do = a*'—a—:% , d*o =ad' 5?—;— , {d,a*} =g". (28)
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With the help of these we have the following results:
d, = e ™de™ = d+ta*'ohjox’,
d} = e’d*e™™ = d* +1a'0hjox’, (29)

which, when substituted in the expression for H,, Eq. (27) gives:

.. 8h 0Oh )
2H,0 = (dd*+d*d)o+1*g" ) w+1[a*, a’]1D;D;ho. (30)
X

To obtain this result we used:

; ©h . @ (. Oh ; Oh
d(a -a—xiw)=a*’5;}(a —5;-)0)-—0 Edw’

. Oh ; 0 . 0h . Oh
da* (a*’ “a? (9) =4 5';‘ (a*’ -—5;;) w—a* a—x-;' daw. (31)
Finally D; stands for the covariant derivative. By definition one has D} = 0h/ox' and
° . . .
7 (a'Dih) = a'D;D;h, which completes the derivation of Eq. (30). The Hamiltonian has
now acquired a potential term proportional to the square of the gradient of 4. Its minima
are therefore the critical points of the Morse function and for large ¢ these minima become
increasingly localized. We can expand around a critical point, and choose locally flat coor-
dinates, such that g,(x) = J,;+0(x?) (which means that the connection I’ f,.,, vanishes to
0(x)) and h(x) = h(0)+ 4, x?/2+0(x*). Note that the number of negative 4; is precisely
the Morse index of the critical point we are expanding about. Thus we get the following
expansion for the Hamiltonian around the critical points:

az
#,= ) |- g et fal, alf. (2
x;.-

which everybody will recognize as the m-dimensional harmonic oscillator (in diagonal
form), plus something that commutes with that, which is easily seen from the following
properties (no summation over i):

[af, aJdx" A dx™ A ... A dx? = +dx* A dX? A ... A dXP, (33)

with the eigenvalue +1if ie {i;, i, ..., i,} and —1 otherwise. From this one immediately
obtains the spectrum for the Hamiltonian:

E =2t Y (A4l (1+2N)+4n)+0(°), n = +1, N;eN. (34

This could only give zero energy if N; = O for all i and if n; = —sign A;. Since the number
of negative eigenvalues 4, is precisely the Morse index p for the critical point we are expand-
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ing about, we have p indices i for which n; = + 1 and the eigenfunction is therefore a p-form.
In the approximation we are currently working with, each critical point gives a suitable
groundstate wave function whose energy vanishes to order t, and as asserted before there
are M, such wave functions in A,.

One might think that higher order perturbation theory will remove the degeneracy
among the zero-energy states, however, supersymmetry will actually guarantee that the
energy will vanish to all orders in perturbation theory, and only tunnelling effects will
be able to remove some of the degeneracies. The number of harmonic forms is determined
by topology and this is consistent with the fact that perturbation theory is a local expansion,
which is blind to the topology of the manifold. Tunnelling will involve paths that do probe
large portions of the manifold and should be able to distinguish which critical points
are removable. These considerations therefore motivate that one can refine the weak Morse
inequalities by studying tunnelling for the Hamiltonian H,. This is what we will consider
next.

Before we discuss the tunnelling analysis, it is instructive to give the supersymmetric
non-linear sigma-model. Its action is given by [8]:

=% .‘ dzx{gij(¢)an¢ia“¢j+ igij(‘ﬁ)‘ﬁi?"Du'Pi +i% Riuj(‘i’)‘f’i'l’l‘l_’k'/’i

. .. Oh 0Oh .
—8%(¢) = — —D.D;h(P)F ). 3
8°9) 351 557 ~DPHDPY) (35)
where the covariant derivative of the spinor fields is given by:
Dy’ = 8,¥'+Ii($)0,4°v". (36)

For the Witten-index computation all non-zero energy levels have boson-fermion degen-
eracy, so that one can restrict oneself to the zero-momentum sector, which gives a supere-
symmetric quantum mechanics equivalent to the exterior algebra which we considered
before. To be more precise, since y is a Majorana fermion, in the representation of the Dirac-
-matrices where y, = diag (1, — 1), v’ has two components, which are each others conjugate.
If we call the upper component &', then @ and Q* in this supersymmetric quantum mecha-
nics are exactly equal to d.and d*. Note that ¢’ are the coordinates on the target manifold
M, which are to be identified with x* in our earlier discussion of the exterior algebra. Origi-
nally Witten introduced the Morse function 4 to get rid of a degeneracy in the classical
potential (which is zero for all ¢/ if & = 0). In the superfield formulation of the super-
symmetric sigma model /& appears simply as a magnetization:

S = 3 [ d*xd*0{g,(®)DP'DP’ + h(®)}, 37N
where the superfield and superderivative are given by:
@' = ¢'+8y'+00F'2, D, = 0/08,—i(By")0,. (38)

- We will now discuss the tunnelling calculation. For |P;) the perturbative vacua we
constructed before, we can compute the matrix elements {P;|d,|P;>, which will allow us
to calculate the Hamiltonian with respect to this basis. This matrix element can be calcu-
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lated approximately by an instanton calculation, but will in general be zero due to the
fermionic zero-modes. {P;{d,|P;> will only be non-zero if the instantons relevant for the
tunnelling from P, to P; have exactly one fermionic zero-mode, which will be absorbed
by d,. Due to the supersymmetry, the number of fermionic zero-modes equals the number
of bosonic zero-modes. There is always at least one bosonic zero-mode, which is related
to the invariance of the instanton solution under time-translation. We cannot have more,
otherwise the matrix element of interest would vanish. Therefore, the only instantons rele-
vant for computing {P;|4,|P;> correspond to tunnelling paths that are isolated. They
form a discrete moduli space, see Fig. 4 for an example.

Vpvt

Fig. 4. Here we illustrate the tunnelling paths between two critical points, which differ in Morse index by

one. In this example we see that there are two instantons. We also indicate the tangent space Vp N o+,

which is transported along the tunnelling path, so that we can compare its orientation with ¥g. In this
example both instantons contribute with the same sign

We can now make use of a version of the index theorem [20] relevant to the present
tunnelling analysis. It states that the number of fermionic zero-modes is equal to the spectral
flow of the Hessian D;D;h(x) along the tunnelling path from P; to P;; in more mundane
terminology, this spectral flow is the number of eigenvalues that change sign, when follow-
ing the Hessian along the tunnelling path from one critical point to the other. Since the
number of negative eigenvalues at a critical point equals its Morse index, the only tunnelling
paths we need to consider are those between critical points for which the respective Morse
indices differ by 1. To be even more precise the instanton path has to go from P, with
Morse index p+1, down the gradient lines of 4 to P;, with Morse index p. One easily
verifies that the instantons are determined by the equations:

dx'(z) oh(x(7))

= —g¥(x(x))

dt ot 39

with the boundary conditions x(— o) = P, and x(c0) = P;. The total action is found to be
S = t(h(PY)—h(Py)) > 0.
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The steepest descent approximation for the instanton calculation [8, 9, 21] gives us:
(Pld P> =Y K(r) exp [—1(h(P)— h(P)))], (40)

where r runs over the discrete set of instantons and K{(r) is the prefactor, which one obtains
by calculating the determinant of the quadratic piece in the action, when expanding around
the instantons (taking into account the transverse fluctuations) and a factor coming from
the zero-modes. One can now show that the supersymmetry will cancel the following two
contributions to K(r) up to a possible overall minus sign, namely those coming from the
fermionic and the bosonic transverse fluctuations and the contribution coming from the
fermionic and bosonic zero-mode. Hence for each tunnelling path, K(r) = +1, so that
one has the following result:

(Pild|P;> = n(P;, P;) exp [ —t(h(P)— h(P)))], 41)

where n(P;, P,) is an integer, To determine the sign that each instanton will contribute
requires a more careful analysis of the instanton calculation and involves the parallel trans-
port of a certain tangent frame along the tunnelling path, which allows one to compare the
orientation of the frame at P;, to the frame at P,. These notions all occur quite naturally
in the WKB analysis involved in the tunnelling calculation [22], but we will only state its
result (see Fig. 4). Let P, be the critical point with index p+ 1, and ¥, the (p+ 1)-dimension-
al subspace of the tangent space at P,, spanned by the eigenvectors of the Hessian with
a negative eigenvalue (V; is the tangent space of the unstable manifold associated with
P,). Let v the tangent vector to the tunnelling path at P, then the tangent frame we wish
to transport along the tunnelling path is ¥; n v*, which is p-dimensional and can therefore
be compared with the p-dimensional space V; (the tangent space to the unstable mani-
fold, associated to the critical point P;). The orientations of the space ¥; and ¥, are the
ones induced respectively by the (p+ 1)-form and the p-form, which arise as the eigenfunc-
tions in the perturbative analysis. This prescription gives us a unique way of determining
n(P;, P) and Witten used these to define a new cohomology (called twisted cohomology {9]):

8|g> = Y n(Q P)IP), (42)
PeWy 41
where Q € W,-and the W, form the so-called Witten complex:
W, = {IP> |u(P) = p}. (43)

Thus 6: W, - W,,, and the matrix elements of & are precisely those of d,, with respect
to the set of perturbative vacua = |_J,W,. Consequently 6 = 0 and we can form a cohom-
ology. The instanton calculation proves that if (56*+0*8)ix) = Alx), with 4 #0,
then [x) has non-zero energy. It has required some work to rigorously prove that the
converse is also true, that is when A = 0 the corresponding eigenstate (which is in the twisted
cohomology) does indeed have zero energy (Witten [9] only supplies some intuitive argu-
ments). This then shows that B, = dim ((ker é/im 8) n W)), establishing that the Betti

numbers can be determined from Morse theory. For the strong Morse inequalities, see
Ref. [23].
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4. Floer homology

We consider now Y to be a three-manifold over which there is defined a Yang-Mills
‘gauge theory, that is one associates to Y a fibre bundle, with fibres in a compact gauge
group, for which we will choose SU(2). The analogue of the manifold M is now played
by the configuration space, ¥ = &//¢ which is the space & of connections 4 on the mani-
fold Y, modulo the SU(2) gauge transformations ¢ (maps g of Y into SU(2) where g acts
as follows: ?4 = gAgt+gdg"). The infinite-dimensional configuration space % is a mani-
fold away from the so-called reducible connections (4 is reducible if there is a gauge
function not in the centre of the gauge group, which leaves the connection invariant:
g ¢ Z,,°4 = A). The reducible connections, of which 0 is an obvious example, give rise
to conic (orbifold-type) singularities. However, € is smooth enough to allow for a formula-
tion of Morse theory. We will sketch here some of the results without going into too much
details and we refer to Floer’s original paper [13] (of which the introduction is quite readable
for a physicist), or to Braam’s review [14]. Atiyah’s paper [15] provides the grand scheme
of how everything is to fit together.

Floer takes as a Morse function the Chern-Simons functional (A A, ;‘ dx“):
i

hA) = [Tr(A A dA+2 A A A A A) = [ dyxe™ Tr (40,4, +% 4,4;4). (44)
Y . Y

We note that A is not quite an appropriate function on €, since it is not exactly invariant
under gauge transformations,

h(°A) = h(A)—3 [ Tr ((g'dg)*) = h(4)—8n* deg (g: Y — SU(R)). (45)
Y

Therefore one rather considers 4 as a function on &#/%°, where %° is the connected compo-
nent of the space of gauge transformations. The critical points of A are easily found to be
the curvature free configurations, called flat connections in the mathematical terminology.
They are the classical minima of the Yang-Mills potential. Indeed one easily verifies:

0h(A)

o pik -
m = & F (x)/2 = BY (X), (46)

where Fij(x) = 0,45(x)— ajA“(x)+£,,,,cA"(x)A 9(x) is the curvature (as a 2-form it is given
by F=dAd+AAA =F, ,—4- dx* Adx"). Similarly it is very easy to determine the gradient
) ‘

flow of this Morse function, whose solutions will describe the tunnelling in this infinite-
-dimensional analogue of the exterior algebra (further on we will explicitly give the relevant
supersymmetric Hamiltonian). We find:
0Ai(x; 7).
ot

These are exactly the anti-self-duality equations if we extend the connection A over ¥, ta
a connection over M = Yx R, with of course 7 being identified with the fourth extra

= Bj(x; 7). @7
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coordinate. One easily verifies that Eq. (47) is equivalent to F = - = F. The Hodge = is
defined with respect to the metric of M, which is in an obvious way obtained from the metric
of Y, by defining g4, = 1,8, = Ofori = 1, 2, 3. Thus we see that the Yang-Mills instantons
occur in a natural way in Floer’s analysis.

Similar to the Witten complex, one can now consider what we will call the Floer
complex. It is simply the set of gauge equivalence classes of the flat connections ¥". A flat
connection is classified by its holonomy along a loop, the well-known Wilson loop
Pexp (§ 4), and one can show that this holonomy only depends on the homotopy of the

loop 7. 2'I‘he, argument is that under a small deformation of the loop, the Wilson loop changes
proportional to the curvature (this is obvious for an abelian gauge group, but can be suitably
extended to non-Abelian groups [24]) and is hence zero. Since the homotopy does not
change under continuous deformation, the holonomy stays constant under these changes.
The Floer complex is therefore in one-to-one relation with the set of SU(2) representations
of the fundamental group =,(Y). In general, however, the space of equivalence classes of
flat connections is not discrete. My favourite example is of course the case that Y is the
three-torus T2, where it can be shown that ¥~ is the orbifold T3/Z, [25]. Also in general,
the Floer complex will contain reducible connections (since O is always a flat connection).
For these reasons one imposes some constraints on the manifolds ¥ to be considered. One
requires them to be so-called homology three spheres, which means that their (integer)
first homology H,(Y, Z) s zero. This is sufficient to show that z,(Y) is finite and to guarantee
that the only reducible connection in the now finite Floer complex is the 0 connection.

There are, however, two (related) technical problems one has to deal with. Firstly,
for h to be an appropriate Morse function we were actually working on o//4°, whereas
for the Floer complex, we considered dividing out all gauge transformations. Thus, we
have to convolute the Floer complex with $/%° ~ n5(SU(2)). The second problem is that
the Hessian of the Chern-Simons functional is no longer an elliptic operator, it is actually
the covariant derivative operator, which is of Dirac-type and is unbounded from below.
Therefore, it is impossible to define the Morse index, since there will always be an infinite
number of negative eigenvalues. One can, however, define a relative Morse index, by
declaring the Morse index related to a preferred flat connection equal to 0. The most
obvious choice is the 0 connection, but it is reducible and needs special care [13, 14].
In the physical terminology, together with the fact that the Hessian is a Dirac-type operator
this choice corresponds to a choice of vacuum, or Dirac-sea. The relative Morse index
follows now directly from the index theorem [20] for the Hessian, similar to what we saw
in the previous ection.

From instanton calculations on M = Y xS!, we know that the spectral flow for
tunnelling from a flat connection 4 to a flat connection °4 is equal to 8k, when k is the
winding number of the gauge transformation g. It is essential that M is a compact manifold,
which is achieved because we tunnel to gauge equivalent configurations. This implies that
one can divide out the action of ¥/#°, provided the grading due to the relative Morse
index is defined modulo 8. This brings us back to a finite Floer complex, with a grading
defines modulo 8 and, as for Witten’s formulation of Morse theory for a finite dimensional
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manifold, Floer was able to define a boundary operator 9, which squares to zero and defines
a homology, where the eight homology groups.

HF(Y) = (ker 3/im 8) n F. G

are called the Floer groups, with F* the Floer complex of the flat connections which have
a Morse index i (mod 8) with respect to the 0 connection. Floer has proved that these
homology groups lead to invariants for the manifold ¥ (i.e. do not dependent on the choice
of metric on Y).

We end this Section with the promised construction of the supersymmetric Hamilto-
nian, whose zero-energy ground states should correspond to the Floer groups (or to
ker (0*0+00%)). As in the previous Section this Hamiltonian should be given by the Lapla-
cian on .« in terms of the twisted exterior algebra on «¢. The standard exterior algebra
on & is given by (compare Egs. (3.16)):

é
d = fd3x¢i(x) m, d. = "f SxP(x) ~—— A"( )’ 49
Y

Y

where y{(x) form a basis for the exterior algebra of o at A(T}f) and F%(x) form the dual
basis (in T,o). They are anticommuting spin-one fields and satisfy a Dirac algebra:

{9i), ¥i} = (P, B} = 0, {9f(x), L)} = g,,(x)8%65(x—y).  (50)

The twisted exterior algebra is now given, in terms of the Chern-Simons functional which
Floer chose as his Morse function, by:

d._ = exp (—h(4)/e)d exp (h(A)]e*), d;_, = exp (h(A)/e*)d* exp (—h(A)[e?). (51)

For reasons which will become obvious, we have chosen e-2 instead of ¢ and we are now
interested in the limit e » 0. The Hamiltonian to consider is given in terms of the twisted
Laplacian on & by:

2¢7’H = d,-d7-2+d%-2d, . (52)

A straightforward computation, exactly analogous to Eq. (30), gi\?es the supersymmetric
Hamiltonian:

= fd:’x Tr (ezﬁz + ;—2' B? +8‘jk1/)iDj{I-’k) » (53)
Y

where D; = 0;+ad 4, is the covariant derivative in the adjoint representation and IT?(x)

o - E
=~ 5:47(—) are the canonical momenta. Restriction to the gauge invariant configura-
i\, ,
tion space € is easily achieved by imposing Gauss’ law, in the same way as this is done in
the Hamiltonian theory for ordinary Yang-Mills theory in the 4, = 0 gauge. We now see
that e plays the role of the coupling constant and that the large ¢ asymptotic analysis of the
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previous section corresponds to the weak coupling expansion. Finally we note, as mentioned
in the introduction, that the bosonic part of the Hamiltonian is exactly the ordinary Yang-
-Mills Hamiltonian.

5. The Lagrangian for topological Yang-Mills th_eory

As we mentioned in the introduction, there is a relation of the Floer groups to the
Donaldson invariants, which arise when one “cuts” a closed four-manifold M into two
pieces along a three-manifold. That is, each half has the same three manifold ¥ as a bound-
ary. For the interested reader we refer to Atiyah’s paper [15] for more details. Here we
only remark, that due to this relation one anticipates that there should be a Lorentz-
-invariant formulation in four dimensions, which reduces to the Floer theory on a manifold
of type M = Y x R in the Hamiltonian formulation, but which on a closed four manifold,
would be intimately connected to the Donaldson invariants. In physical terminology
this means that one should look for a Lagrangian formulation of the Hamiltonian in
Eq. (53). This is the challenge Atiyah [15] put to the physics community and we will dnscuss
how Witten addressed the question.

He introduced a-U-quantum number, which corresponds to the Floer groups (and
is conserved mod 8), with the following assignment:

U4 =0, Uw=1 U@ =-1L (54)

One now likes to fit (4, y, P) into a-Lorentz multiplet, which will somehow have to play
a role in the instanton calculation on the four manifold M. There is an obvious difficulty
with this, which is related to the fact that v and  are anticommuting spin-one fields, which
already indicates that the supersymmetry, alluded to in the previous Section is not quite
standard (as we will see, it is more natural to see y as a ghost field and to talk about a Slav-
nov or BRST symmetry).

If we consider deformations 84 along a given instanton moduli space .#;, then in order
for A+64 to still be a solution it has to satisfy the deformation equations:

Dy3Ay—DydA,— b5 D"6A” = 0, D54 = 0. (55)

The first equation is simply the deformation of the self-duality equations, the second
is a gauge condition. The 54 form a tangent vector to the moduli space .#,, which in the
physical terminology is called a zero-mode. Usually .#, is considered the space of all anti-
-self-dual solutions (or anti-instantons). A simple change of orientation of M together with
some field redefinitions will give Witten’s [1] results, but here we follow the notations of
Ref. [18]. We want every bosonic zero-mode to be cancelled by an anti-commuting zero-
-mode, which will be established by the following term in the Lagrangian:

47Dy, + BD,Y". ' (56)

Here §,, is an anti-commuting anti-self-dual tensor field, related to the fields in the previous
Section by ; = £,5%'"/2. We therefore see that we had to introduce § and y, as new
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fields. One should compensate those by commuting ghost of ghost fields ¢ and ¢ to cancel
these added degrees of freedom.

Witten [1] conjectured the following Lagrangian that could be related to the Hamilto-
nian of Eq. (5§3):

&L = Tr {—% F, ,F* +4§"'D v, +BD v + J)’Dzd) +¢lv,, v']
+ @[, P]+(DEA" +EDWD c+ ...}, (57)

where the dots stand for terms higher order in the fields, D',’{' is the background covariant
derivative for the background gauge, where the last two terms describe the standard
Faddeev-Popov gauge fixing, with ¢, ¢ the normal ghost fields. The main motivation for
this expression is largely that in a naive instanton calculation (ignoring for a moment the
zero-modes, by assuming that the moduli space is a single point) the partition function
is given by

Pf(D)
Jdet (4)

In this equation Pf(D) is the Pfaffian of the antisymmetric operator D, appearing in Eq.
(56). The Pfaffian comes from the Grassmann integration over the anti-commuting fields
and up to a factor +1 is equal to the square root of the determinant of the operator. The
factor in the denominator is of course coming from the Gaussian integration over the
commuting fields. The operator 4 is the one occurring in Eq. (55), which is, by construction,
related to the operator D through the anti-commuting symmetry 64, = ey,, where ¢ is in
this case a scalar Grassmann variable. In the BRST language this defines an anti-commut-
ing operation s, such that s4, = y,. This means that in Eq. (58) the denominator will
cancel against the nominator, up to a factor + 1. Note that the Faddeev-Popov determinant
cancels exactly against the determinant coming from the integration over the ghost of
ghost fields @, ¢, which are assumed to be complex fields. Requiring the quadratic part
of the action to be invariant fixes the symmetry for the other fields and the U quantum
numbers for ¢ and ¢ to be U(p) = 2 and U(¢$) = —2. It also almost fixes the form of the
higher order part of the Lagrangian (Witten showed that there is a choice which corresponds
exactly to a so-called “twisted” version of N = 2 super Yang-Mills theory). The action
in Eq. (57) presents potential pitfalls. It is not obviously positive definite and it might be
plagued by Gribov ambiguities. As we will see, most of the fields are ghost or ghost of ghost
fields, and the action is actually constant. Thus, we could phrase the question as whether
the physicist’s description of how to deal with the Lagrangian in Eq. (57) leads to a normali-
zable integration measure on the configuration space (in a fixed topological sector).
Let us now come back to the result of the partition function in Eq. (58), which more
or less by construction is equal to +1 in the case that .#, exists of one point. Similarly,
when #, is discrete, one finds Z = Z (— 1™ and Witten argues [1] that this is precisely

zZ =

(58)

one of the Donaldson invariants (by studymg how the sign of the Pfaffian is determined).
The strength of Witten’s analysis [1] is the way one shows that the partition function is an
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invariant, i.e. does not depend on the metric. This property is at the heart of what topo-
logical field theories are about. In Witten’s original analysis this invariance seems to come
out of the blue, however, furtheron we will analyse the deeper reasons for this. At this
point we will only specify the properties, which will guarantee the topological nature of the
theory. Firstly the anti-commuting symmetry s is a BRST or Slavnov symmetry, whose
square is zero, s> = 0. Witten [1] did not take ordinary gauge fixing into account, implic-
itly working on the space &//¥, rather than on . In that case s2 is only zero on gauge
invariant states, which is all one needs anyhow. The advantage is furthermore that in this
way one does not have to address the issue of Gribov ambiguities in the usual gauge fixing.
The second property we already alluded to before, is that the action is actually constant. This
is expressed by the fact that one can write the action S = | /g% as (F = 1 F,,dx* Adx"):
M

S =2 [ Tr(F A F)+sSg, (59)
M

where Sy is an integral over a local gauge invariant polynomial of the fields. Finally and
crucially, one can show [1] that the energy-momentum tensor T,,, which is obtained by
varying the action with respect to the metric g, is BRST-trivial: T,, = si,,, where again
A is a local gauge invariant polynomial in the fields (this actually follows from Eq. (59)).
Following Witten [1], the fact that s> = 0 and T = s/ will lead to the fact that the parti-
tion function is independent of the metric:

1 1 1 o
0,2 = — ?IQAEGS exp(— ?S) = - 2—e§Z <s fJg éguvl‘”> =0. ° (60)
M

It is crucial to observe here that one has to assume that there is no anomaly in the energy-
-momentum tensor, i.e. one has to make sure that quantum corrections do not spoil the
BRST-triviality of the energy-momentum tensor. This has successfully been shown to
one-loop in Ref. [26], but it is expected that the symmetries are strong enough to allow
one to derive Ward identities that will establish the BRST-triviality to all orders. Similarly
one can now ask which operators @ will have invariant expectation values, i.e. satisfy the
equation:

1 _
8,(0) = <5,0— 5208 J JE 5g,"2.‘"'> = 0. (61)
M

We see that a sufficient condition is that 6,0 = s for some gauge invariant operator ¢ (we
will, however, only consider operators that do not depend on the metric) and that @ is
BRST-trivial, i.e. s& = 0. When, however, 0 itself is the s of something (¢ = sg, for some
gauge invariant operator g) then its expectation value is zero and does not lead to anything
useful. In conclusion, the interesting observables, which have invariant expectation values
are those with a non-trivial equivariant (or basic) cohomology [17]:

0 € ker 5f/im 5, (62)
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where 5 restricts s to the gauge invariant set of operators (which are polynomials in the
fields). However, it is not known whether all non-trivial observables are of this type.

Until now, we only considered the case where the moduli space is discrete, but in the
examples mostly known to physicists like for S*, this is not the case. Then in general the
partition function will be zero, due to the presence of anti-commuting zero-modes. To have
a non-zero result one needs to consider operators which will cancel all these zero-modes
and this is what the quantum number U is useful for. One can show [1], that the operator
in question should be a polynomial in the fields, with a net value for U (which is additive),
equal to the number of zero-modes. This is all quite similar to ’t Hooft’s consttuction of the
effective action for the breaking of chiral U,(1) through instantons [27]. Again, by the
index theorem the number of zero-modes is equal to the dimension of the moduli space:

U(0) = dim (#,) = 8k—3 (x(M) +a(M)), (63)

where y(M) is the Euler characteristic and o(M) is the so-called signature of M, e.g.
(8% = 2, o(8*) = 0. In the instanton calculation the expectation value of the operator
0 is calculated by first integrating out the non-zero modes, including the ¢ and ¢ field,
after which @ takes the form

0=, @) .07 UWO) =n, (64)

where g, are parameters describing the instantons (moduli parameters) and #* the zero-
-modes for y. The expectation value of 0 then reduces to an integration over moduli space,
with the canonical measure du defined on .#, [1]. Actually, since at least for a physicist,
it can be easily shown that the expectation values of the operators are independent of the
coupling constant (if 80/0e = 0), one can work in the weak-coupling limit, and the only
integration over non-zero modes that survives in the limit e — 0, is the integration over
the fields ¢ and ¢. From Eq. (57) we see that [y,, ¢*] acts as a source ¢. Thus [1], one
replaces in @ ¢ by

y by their zero-modes and A by the self-dual connections, where G(x, y) is the Green
function for D,D*. This defines therefore explicit formulas for the invariants in terms of
integrals over the moduli space, which we will discuss in the next Section.

We will end this Section by a discussion of the BRST formulation of topological
Yang-Mills theory [16, 18, 28, 29, 30]. The strategy is to start with an action which is inde-
pendent of the metric (to guarantee the topological properties). This will in general have
large symmetries. In the case of Yang-Mills theory, one starts [16] with an action that
is proportional to the topological charge:

So =2 [ Tt (F A F). (66)
M

This action is clearly invariant under an arbitrary variation of the gauge field (provided
we stay in the same topological sector). This symmetry needs to be gauge fixed: & = %,
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+5V,. The normal gauge fixing (dividing out the action of the gauge group ¥) can and
should be done separately [28]

L = go+SV¢+S,Vn, (67)

see also [30]. Both s and s, generate Slavnov or BRST symmetries and satisfy s* = 0,
s2 =0 and {s, 5} = 0.

To be more precise, the i invariance is given by 04, = y,, whlch we fix by the gauge
condition F~ = (F~ * F) = 0. Note that this does not comp]ete]y fix the gauge, but this
is on purpose, since we wish to be left with the (finite set of) degrees of freedom that describe
the instantons, which form exactly the kernel of this gauge condition. Thus, as is familiar
in the BRST formalism, y, becomes a ghost. We also have a Lagrange multiplier field
b,,, which will enforce the constraint F- = 0 and is therefore.an anti-self-dual tensor
field. Finally one completes the set of fields by the anti-ghost §,,. However, the variations
of A in the direction of the gauge orbit for which y, = D,¢ with ¢ some function in the
adjoint representation of the gauge group, is a redundant symmetry (because it will be
described by dividing out the action of the gaugg group %) and needs therefore to be
removed too. This symmetry is then fixed by D, y" = 0. The field ¢ will hence be the ghost
of a ghost (and is a commuting field). We will call the Lagrange multiplier, used to enforce
this gauge condition § and the anti-ghost of the ghost ¢. This completes the description
of the field content and explains the origin of all the fields in Witten’s {1] original formula-
tion. It is easy to find the appropriate gauge fixing Lagrangian &, = sV, of Eq. (67)

Ly = sTr (D¢ + 7 (b —F ) +s Tr (B[4, 1), (68)
where the last term can be freely added; however, with it the Lagrangian can be seen as
a “twisted” version of N = 2 supersymmetric Yang-Mills [1]. The Slavnov or BRST
symmetry s is given by the following formula [{8] (for ease of notation we suppressed
the indices):

sA=v¢, sy'=0, o =y-Do,

sp=b'y, sb'=0, b =b-[owp]

36 =f, sp =0 B = ﬁ'—[ws &]’

so=¢', s¢'=0, ¢ =¢—-[o,0]?2 (69)

We have written the action of s in terms of shifted fields to demonstrate the fact that the
ordinary local s-cohomology is trivial. Any operator which is in the kernel of s, can also
be written as the s of some other operator. That would not leave any interesting observables.
As we saw, it is not the local, but the equivariant cohomology that determines the interest-
ing observables. Related to this is that in Eq. (69) the field w appears, which is a ghost-
field, with values in the adjoint representation of the gauge group. It plays the role of an
infinitesimal gauge transformation-on which the action does not depend. This is cruciai
for defining equivariant cohomology, which goes back to Cartan [17), who called it basic
cohomology. For this cohomology one restricts s to the gauge invariant and w independent
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operators. It is this cohomology which is non-trivial, leading to the interesting observables
that will be discussed in the next section. To complete the discussion, the ordinary gauge
fixing does not interfere with the above construction and is as usual formulated as follows:

‘?FP = SH»VFP = Syc—(b—D::'A“), (70)
s; A, = Dye, s = —[c,clf2, sgE=b, sb=0. @))

Let us emphasize again that Gribov ambiguities will in general be present, but to the point
of dividing out the gauge group, this seems to be only a technical handicap. As we said
before, and which is the attitude taken by Witten [1], one can entirely work on #/4, where
this issue need not be addressed. It is, however, possible that Gribov will still take revenge
through the gauge condition D,y* = 0, but we have nothing sensible to say on this right
now.

6. Donaldson polynomials

In this Section we will finally be%able to construct the Donaldson polynomials. As
observed before, we need operators with a net U charge equal to the dimension of the
moduli space and we will build these operators as a product of operators @;, which are
non-trivial elements of the equivariant s-cohomology with charge U, Thus 0 = I10,
with ZU; = dim (.#,). The simplest such non-trivial element of the equivariant s-cohomo-
logy is:

Wo = 3 Tr(9*(x)), U(W,) = 4. (72)

Note that W, = sW = % s Tr (o —3 @?), s0 indeed sW, = 0, but nevertheless it is a non-
~trivial element of the equivariant s-cohomology, due to the w dependence of W. We now
need to verify explicitly that W, is indeed an invariant, by demonstrating that it does not
depend on the coordinate x € M. For this it is sufficient to show that dW, is s-trivial, i.e.
there exists a 1-form W, such that dW, = sW,. This is easily checked:

dW, = Tr (¢D@) = —s Tr(py) = sW,, W, = —Tr(Pyp). (73)

In this equation D is the covariant differential and y is the ghost 1-form y,dx*. From
Eq. (73) we see that W, itself is not s-trivial, however, since it is a 1-form on M, we can

integrate it over a l-cycle y,, which by the use of Stokes’ law, will show that § W, is
Tt
s-trivial:

S§Wl=§dLVo=§WO=O. (74)
n 7 om

However, in order for § W, to have a chance to be an invariant, it should not depend on

14
the particular choice of the (closed) 1-cycle y,, but only on its homology class. For this
it is sufficient to show that the integral of sW, over the boundary of a 2-cell a,, is zero.
Again by Stokes’ law, this is equivalent to demanding dW, to be s-trivial. One easily finds
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this to be the case:
dW, = =Tt (¢Dy+D¢ A ) = sTr (3 v A p—¢F) = sW,,
W, =Tr(s v A py—¢F). 7s)

Now W, is a 2-form on M and its integral over a 2-cycle y, (i.e. a closed two-dimensional
cell) should be s-trivial, we leave this to the reader to verify by using Stokes’ law. Again
demanding that § W, will depend only on the homology class of the 2-cycle y,, leads to

Y2
the requirement that dW, is s-trivial, and sure enough things work out beautifully:
AW, =Tr(Dy A py—Dop A F)=sTr(p A F) =sW,, W;=Tr(y A F). (76)

It starts to get boring, but hang on, we are almost at the end. Again W, itself would not
lead to an observable but it is a 3-form on M and we can integrate over a 3-cycle y;, which
in order to lead to an invariant should only depend on the homology of y;, leading to the
condition that dW; is s-trivial. So for the last time:

AW, = Tr(Dy A F) = —1sTt(F A F) =sW,, W, =Tr(F A F). an

We recognize that the 4-form is precisely proportional to the Pontryagin class and the
integral over the only 4-cycle, which is the manifold M, is thus proportional to the topologi-
cal charge and is clearly an invariant. And if one really wants to go to the bottom of it, the
Bianchi identity DF = 0, will show that s { W, = 0.

M

We have thus constructed a chain of observables 0, = § W,, with U, = 4—i, where
1

Y0 is a point x and y, = M. They form a map, which we will 7ca11 the Donaidson map, from
the homology H,(M, R) of the base manifold M into the equivariant s-cohomology of the
field theory. As we observed in the previous Section around Eq. (65), these observables
descent to objects on the moduli. Those objects are polynomials in the zero-modes 6; (with
coefficients that are functions on the moduli space) of a degree which is exactly the U quan-
tum number of the operator in question. The 6; can be naturally interpreted as differential
forms on the moduli space .#, and therefore @; will become a (4—i)-form on .#, after
substituting in @, ¢ by Eq. (65), v by their zero-modes and A by the self-dual connections.
This also means that s, after this restriction to the moduli space, should play the role of the
exterior derivative on .#,. Although this seems obvious, the author believes that this has
not yet been established in a sufficiently clear way in the literature up to now, but let us
here assume it to be the case. Then the Donaldson map is a map from H, (M, R) into
H*"i(#,, R) and a Donaldson polynomial is simply the wedge product of these elements
in the cohomology of the moduli space, such that the total degree is the dimension of the
moduli space. The invariant is obtained by integrating over moduli space. If & is the

image of the Donaldson map for 0, = § W,, then the Donaldson invariant is given by:
e Ra. G

f o AD™ A Ad™ Y (4—k) = dim (A,). (78)
A i
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This gives very explicit formulas for the Donaldson invariants, which is the strength of
Witten’s [1] construction. Not surprisingly, there exists a topological version of quantum
mechanics, which will give the Euler characteristic as an invariant [31]. It provides an inter-
esting framework in which many of the above manipulations can be defined more rigorously.
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