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INSTANTONS IN QCD AND SOLITON MODELS OF HADRONS
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Using an analogy to a well known soliton model of hadrons the existence of the quark
sea appearing in deep inelastic lepton-hadron scattering is justified. Then using the existence
of <ypy) condensate in QCD we insert in the QCD functional integral a Lorentz scalar
field which describes the quark-anti-quark pairs, and produces a dynamical-mass for quarks,
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1. Introduction

It is widely accepted today that quantum chromodynamics (QCD) is the quantum
theory of strong interactions, due to its remarkable successes in describing high energy
interactions and the classification of hadrons [1]. Unfortunately, very little has been done
toward an understanding of the hadronic structure: the QCD coupling constant increases
with distance and we are yet unable to handle quantum theories with a coupling constant
greater than one. That is why the soliton models of hadrons, of phenomenological nature,
are so extensively used in fitting the experimental data, in understanding the confinement
of quarks [2, 3]. The discovery of the powerful topological methods has raised the bid for
theoretical attempts toward hadronic. structure and confinement [4, 5].

In this paper we try to describe through an effective SU(3) flavour octet pseudoscalar
field the quark-antiquark pairs from the quark sea observed in the deep inelastic scattering
of leptons on hadrons, a field very close to a soliton one. The same field describes the meson
cloud surrounding a hadron at low energies. In fact, it can be argued [6] that at high energies
this cloud enters the hadron and reveals the quark-antiquark structure, by the quark sea.
This SU(3) flavour octet field is produced by a process of condensation in the analogy of
superconductivity and superfluidity [7].

A dynamical mass for quarks appears which is the same as that obtained by operator
product expansion of the quark propagator (nonperturbative part). Confinement possibil-
ities are studied considering quark interactions only with this field, extending the Wilson
criterion.
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2. A soliton model for hadrons

The inajor problem of QCD today is to explain colour confinement, the experimental
fact that there are no “coloured” objects in nature. The most believable indications related
are the lattice calculations [8], but a rigorous proof widely accepted does not exist, In prac-
tice, confinement is considered as an input for the study of the related properties of
hadrons. '

We will consider a phenomenological model for th QCD vacuum in which it is
characterized by a colour dielectric copstant k < 1. It will have antiscreening properties; the
interaction between two coloured charges becomes stronger in vacuum. The introduction
of a colour charge in this medium will produce a hole, a sphere. The energy of the system

1
is stable for a fixed radius and is proportional to t If k£ = 0, the energy becomes infinite.

So coloured objects with finite energy cannot exist. We can argue that the energy of configu-
rations consisting of a quark-antiquark pair with opposite colours or of three quarks with
complementary colours is finite, but an infinite work is needed for breaking these configura-
tions into constituents; the model predicts colour confinement.

If we immerse a hadron into QCD vacuum we will obtain a hole of radius R filled with
valence quarks and outside the vacuum with k£ >~ 0. Within the hole k = 1. The transition
region with k = k(x) will produce a contribution to the system energy. We introduce
a phenomenological field ¢ which carries this energy, and fulfils boundary conditions

- 0, k=1,
¢ - {$vac’ k=0

5 :(¢7),=1,s is a Lorentz pseudoscalar and a SU(3) flavour octet field. It is a colour singlet.
In the following by “a, b, ¢’ we will denote flavour indices and by “/, m, n”* the colour
indices.
The quantum system will be described by

£ = P(iy*D,—myy— } kF, F*
- -, - — }‘a
+3 (0,9) (3"9)~ U(d)~f 95 - %% M
where y is the quark field, Af, the gluon gauge field, (%), s are Gell-Mann matrices

satisfying SU(3) algebra
}‘a lb . rabe Aﬂ'c
[—z‘ ’ 3‘] =iy
I

A
and D, = a,,—~ig7A,',, g being the colour coupling constant.

The potential U has the property
U($ =0) = U($ = o) = 0.
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The lagrangian (1) reveals a Yukawa-type coupling, with the effect that

z-a l -
m— m+fy; ey ¢, = m4+fys 5 é.

If we choose fam — — oo, m will tend to infinity and quarks automatically stay inside

the region where ¢ =~ 0, i.e. inside the hole.

The radius R of the hole is the scale of confinement. In the first approximation @ is
a classical field related to collective long range effects in QCD: the short wavelength
components do not exist in this approximation. In computing the lowest energy of the
system, $ is independent of time. Neglecting the quark masses and gluon exchange, treating
$ as a classical field ¢, we obtain [9, 10] the energy of the system

E = Ne+ [ 32 (V¢ (Vo) + U($D)], @)

where N is the number of quarks and e is the lowest quark energy.
The equation for vy is

- i 3
(-ich+ﬁfy55¢0> —l—a-:ﬂ €)

where y = (%), ¢ being the colour and f the flavour. Using the finite volume normaliza-
tion, we write

Pt %) = 3 [(@DntaX)e™ ™ + (b9 Tk X)e].

(—iéhms m){ = {;

- e i,
= Jd“’xx* (—iocV +Bfys 5 gbo) X, &= inf g, 4)

From (3) we obtain

SO

. . ... OE . . . 4
The functional differentiation -&F— = 0 gives us the equation satisfied by ¢,
1]

[
~Vig5+

U b A
i —INx" Bys DR ®

where y is the quark wave function corresponding to ¢ and § is the y, Dirac matrix.
Outside the hadron, (5) has a soliton-type solution if myg, is high and

2
R W

2 ¢uc

%o %[I-Hh *(r— R)] vace O)
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We consider a model where (6) is very approximate, my, is not too high. Equivalently,
the transition region inside-outside is not just a wall but is of order of the hadron radius
itself (the scale of the transition region is ~m~1). In this case, as we will see, we are able
to consider the quantum excitations of ¢ as quark-antiquark pairs inside the hadron
and the classical field [ﬁo as the meson cloud surrounding the hadron. The correct classical
field for us is

e" M¢°'

s =

$o- )

r

Recall that (6) is the one-dimensional Kink soliton of the ¢* theory.

For simplicity, we have supposed that the ¢* field mass matrix M, appearing in U()
is of the form My, = mx1, where 1 is the 8 x 8 unit matrix.

In the following Section we will again neglect gluon exchange and the quark masses.

3. Soliton quantization

At high energies, taking  as a classical field is unsatisfactory, because of short range
effects. The quantum field ¢’ fluctuates around its classical value ¢g:

¢ = g5 +hi+ ..
We put

P'(x) = pg(x)+n(t,X) and  V[&] = J P’X[3 (V) (Vo) + U(¢')].

To quantize the {5’ field we apply the WKB method

+ - o g 3%
VTW]=IT¢&+%fd%d%5$@5ﬁﬁﬁg%;.
x [§'(x)~ $o¥)] [N — oD+ ...
= Vg1 [ @5 9o+ 28 : 5
o] +% x| —Vou+ 562093 - 60 M+ ... (8)

We consider in (8) the value ¢’ = &, as an approximate stationary point supposing that

—mr

the factor

in (7) oscillates slowly.

We solve the Schrodinger problem

. 7 T
~V0,+ ‘&W ni(x) = oupni(x) )
0 0
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and expand
1'(x) = T, CHOmix) ©")
without summation over indexes “a” and “b” in (9) and (9'). #%(x) are normalized accord-
ing to
§ @xnGon’(x) = 6,,0°.

We introduce the creation and destruction operators for the quanta of soliton sector of
é field by

df = m(ég+iwiac;?),
dre = \/210), (Coi0,C).
Then
g 800 +i Z (d;t e — dle ™ yE(R), (10)

n%(x) are the wave functions of the soliton field quanta.
Then the hamiltonian of the system is

H= Z [e(@f) (ap,+ (b (0D, + Zwm(d*)"d"

Z \/ fd3xfw (x)))sﬂ -~ (d+a iwiat da —lwmt)
x ni(X)p(x)+ § d°% £ (V&) (Vo&) + U(dD). (11)

The energy of a state composed of N = Z N, quarks and M = ¥ n,, quanta of soliton is

;,a

E = HIN, M) =} Nyg,+ Z Nia®ig+ VIdo]+ <N, M{Ho|N, M. (12)

n

4. Quark-antiquark pairs from deep inelastic scattering resonances

The frequency spectrum w;, is determined by (9). With the change of function
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the equation is exactly solvable [3]. It has two discrete levels followed by a continuum.
The discrete levels are (we suppose again that the eight quanta of ¢’ field have the same
mass)

1
w(z)a =0, X?)(z) = Eﬁ; H

_ sh z m
wl, =%mi, %i(2) = ch_zz , where z = —-Z?Q(r—R). (13)

The continuum levels, labelled ge R are

wl = mi(3—q*+2), xUz) = €(3th’z—1—q*-3iq th 2).

The energy of a state is
E = ¥ NeytVIGol+ X V3 mygnsa
n a

+ Y myng (3 af +2)2 + (N, M|H I[N, M. (14)

qi,a

The w = 0 modes are spurious appearing because of the lagrangian invariance at
continuous transformations and they have no associated quanta.

The w,, modes are not spurious and we interpret them as describing the excited states
of hadrons, i.e., the hadron resonances.

The continuum modes w,, can be interpreted as quark-anti-quark pairs from the quark
sea, which appears in addition to valence quarks at high energies inside the hadron.

The quantum field #® is spatially confined because of (13). The soliton quanta are
localized essentially inside and near the surface of the hadron. Considering R as an input,
we will redefine the hadron radius R(g) by the condition yg(r = 0) = 0, which implies

3th? %“l R—1—g+3ig th%ﬁk =0.

3.73

my,
As a rough estimate using m, —my ~ 300 MeV we obtain m, ~ 200 MeV. Of course,
we are not able to reproduce the correct masses of hadrons because our formulae are SU(6)
invariant (we have neglected the gluon exchange and the quark mass parameters in &£).

For example, for ¢ = 0 we obtain R ~

5. Bosonization in QCD instantons and the quark condensate

The gauge theory of QCD has nonperturbative features related to topological configu-
rations of finite action [11] which modify the structure of the QCD vacuum [12]. We
believe that these configurations may provide a theoretical ground for the phenomenological
field ¢, introduced earlier. More precisely it can be argued that {8{: ¢y :|0)> vanishes for
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a coupling constant less than a value of the order one and is nonvanishing for a greater
coupling- constant [I13]. From renormalization group arguments indide the hadron the
coupling constant is weak. Then we obtain a condensate outside the hadron like the ones
in the preceding section. At high energies, the corresponding quanta penetrate into the
hadron and generate the quark sea. We will justify the SU(3) octet Lorentz pseudoscalar
field as being a composed field leading to a bosonization process like in super-
conductivity {7}
Let us consider the vacuum-to-vacuum amplitude in euclidean space

<0l0> — j[d(“}d.'pdzudé'rdé]e’fd‘x{.?uauxc(xu)+.Q’fermlon(2“’w)+$rlx{1")+gghmt(f“,c)] (15)

where £ fixes the gauge and £#°* is the corresponding Fadeev-Popov ghost term
with C the ghost field.
Applying the steepest-descent method, we may write

¥ = .?(A")+Zﬂ“M’{"ZS“+iﬁ1\/I 2w+5+M 35 + higher orders in the quantum fields, (16)
where we have used
Ay = (AT (A = (4,)° +(4D"

and M,, M,, M, are some matrices.
(4)° belongs to an equivalence class described by the Pontryagin index ve Z.
It is easily seen that due to topological configurations

o' #0 an
Op(x)0P(x2)09(x3)0P(x4) -
The classical equations of motion for the system are
A.'

(aDi—m)pe() = 0, D(Fi)’ = Fo— 1o, (18)

where
Vi
Dg =d,—ig = (4,)° and F,, = 8,4'~0,4, +gf™ATA"
But
6%s
= (Y*D*~m)6*(x; —x,)
WD) 1

-

A e
= (?”D:u- m—gy, 'E' Ag)64(x1 “‘xz)-

Due to nontriviality of Z“ and using (18b) we obtain 22 = f(Po, o). Consequently,
we obtain (17).
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We arrive at a nonlocal (Hy)*-type interaction, in agreement with the more rigorous
proof of ’t Hooft [14, 15].

Let us write
F = LAY+ AXMY AL+ PMyp+CTMC+ | dyipypMy(x, y)y. (19)

We introduce in {0|0> a Lorentz scalar field which compensates the last term written
in (19):

\’/;a-em; j- [d¢"] o Xty OM TP (20)

This field must have (imposed by us) the property

a

a — 1 0.— A .0
¢ -—Zi< I-Wsa—w-l s

" where [0) is the QCD vacuum and A a parameter with dimension of mass.
We then apply the perturbation theory for

" 1 _ 4, %
¢a = ¢a" P PYs E Y, <(pa = 0. (21)

The value of My is correlated with M, which does not contain time derivates (neither
spatial ones), so ¢, will not be an independent degree of freedom for the quantum system:
it is a composed field.

Let us now suppose that M5(x, y) = §*(x—y)M%’, a rather poorly justified approxima-
tion, but a very simple one to work with.

Inserting (20) and (21) into {0|Q> and omitting the asterisk, we obtain:

- - - 1
00> = | [dydydA,dC*dCd¢ ] exp {—S~ | d*x | 9"M$¢"~ — Pys
’ A?

A a | o
X S PMTY — -5 $"MThys w]} :
Taking into account that dim {M,] = mass?® we can in our approximation write
M? = —F p?5”, (22)
where pu = my, introduced earlier.
Returning to Minkowski space we have
ﬂz ;i’a
& = Py Dy=m)y—3 FFI"+ LW (A,)+ L5 = = ¢4 ~fprs 5 v, (23)
2

U
where f = —A—Z .
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Neglecting the gauge and ghost fields, we obtain Euler-Lagrange equations

a 1 = A ik v
¢ = —Plp'ysa’q), . l'y 6“—m—f755¢ w#:o' (24)

It is clear from (24) that ¢* is a composed field and that it coincides with the phenomenol-
ogical field introduced in (1).
In [13] it is argued that

0, g<3

Py = {9&0, g> %

so using (24) we recognize the property of the previous phenomenological field -

0, g<+%

We associate the running coupling constant of value g = ¢ with the size of the hadron.
As we see from
aq

- — . . A a a ja
£ =p (l)'"a,;"m"./)’s 5 ¢ ) p—% p’o%

even if we take m = 0 (chiral symmetry) the quark acquires a dynamical mass of the form

a

y;
Mayn ~ fdo ~ <01Pys 3 10> (25)

6. Chiral symmetry breaking through {{y) condensate

The nonvanishing of {{y) is known to produce a dynamical breaking of the chiral
symmetry in QCD. But the quanta of this field are the quanta of ¢° We study the lifetime
of these quanta by elementary current algebra methods.

Considering the chiral symmetry SU(3), x SU(3)g we obtain the following charges:

- 2 . 3
Q,= f Cxy () 590, Qs = J Xy (x)ys 5 v(x)

which are time independent if the quark mass matrix is zero in &#qcp- The charges are
generated by the SU(3) vector and axial vector currents:

e a

Bi=Pny e L=y v
The chiral symmetry is spontaneously broken in the sense

Qa|0> = 0’ Q5a19> # 0.
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Using the anticommutation relations for quark fields we may obtain

Ay

Ae
[Qw s D) 'P:I = fupcP 2 ¥ (26)

y
<6 [QSas Prs > ] 10>

"b
- Zaa(io—i,)[ B QLI (nlFps 5 916

A
G- E"y<elws pin) - <n|J3“w>] = 61D 2 IO e @7)

So there will be excitations 1) of vacuum (but not massless) such that
E,=E, and <{(0lJ3%n) # 0.

The matrix element of the axial current is proportional to the disintegration constant
of the quanta, which are the quark-antiquark pairs from the quark sea.
It is mterestmg to note that J3° are very close in structure to our ¢° field.

If we put +* = (9|q‘a5" ¥|0), from (27) we obtain a formula in which

O3 nd> ~ Vo

in contrast to the usual n mesons, when (0[J3%n) ~ v~

It seems that the quark-antiquark pair has a smaller disintegration constant than the
pion,

The scale of chiral symmetry breaking is given by [16] (Pyp) = —(250 MeV)2.

7. Dynamical masses for quarks

The quark condensate produces a dynamical quark mass through a mechanism
analogous to the Higgs mechanism in the electroweak theory. We remark also that (25)
is close to the nonperturbative effective quark mass obtained by developing the quark
propagator in the Wilson operator product expansion (for zero mass)

§ d*x 0 T p(x)P(0) 16>
1
=7 +C1(q) €01:Py:10> + C5(q) <O1:F ), F*:10>+ ...,

where Cy(q) are Wilson coefficients computable through renormalization group methods.
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In the deep euclidean region we obtain [17]

2T 432(Q) W >[ 2(Q)] 5
g(M) [ (M)

M is the point at which we renormalize, mo(M) is the perturbative renormalization mass
and Q? = —¢2.

In the electroweak theory the vacuum expectation value of the Higgs field leads to
spontaneous symmetry breaking SU(2); x U(1) — U(1). The Yukawa interaction fermions-
-Higgs field leads to a mass term for fermions which can be interpreted as inertia due to
particle motion in the bosonic Higgs condensate, in the analogy to the electron mass shift
in solid state physics. In electroweak theory we have a space-time independent condensate
and consequently a constant mass. In this paper we have a space-dependent condensate,
like in ferromagnetism, for instance. The transition region inside-outside the hadron is like
the Bloch walls. In [18, 19] the gluon condensate F;,F ¥ is used to provide confinement.
But its quanta can be interpreted like gluon pairs, something like glue-balls, which must
appear in deep inelastic scattering also. In contrast to our soliton field it will be confined
inside the hadron.

m(Q) ~ mo(M) [ +C3(q) {FyF™ )+

8. Conclusions

We can describe, using a SU(3) pseudovector field, the meson field surrounding
a hadron and the quark-antiquark pairs at high energies inside the hadron, but our formulae
are somewhat phenomenological, because the field ¢’* itself is phenomenological.

It is interesting to study quark confinement in a model where quarks interact only
with the field ¢°. In this respect, we use the Wilson criterion [20] in a modified form. The
energy of a quark-antiquark pair separated by a distance R is obtained applying the formula

~Sgatiafys g fdse®
e EROT _ _f[dd)']e ’
§ [d¢Je 5 |

2
where Sya = — %— jd‘x¢‘¢“, q is the quark charge and ds is the world line element on
the loop I' generated by the pair. We obtain
a2
Aa2e o dsds’
e E®T _ e ﬁ

But $§ dsds’ ~ RT, so we obtain E(R) ~ R. Quarks will be confined in this model
rr

(of course, if we accept this extension of the Wilson criterion).
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