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DIRAC EQUATION WITH HIDDEN EXTRA SPINS:
A GENERALIZATION OF KAHLER EQUATION. PART TWO*
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A sequence of equations numerated by N = 1, 2, 3, ..., realizing the Dirac square-root
procedure for spin 0D 1@ ... B LIN Neven) or @ 3@ ... ® L N (N odd), is further
discussed. For N.= 2 the Dirac-type form of Kahler equation is reproduced. The equation
with N = 3 is conjectured to be physically distinguished, providing a model for fermion
generations.

PACS numbers: 12.90.+b, 11.10.Qr, 11.30.Cp

As is well known, the equation discovered in 1960 by Kiahler [1, 2] linearizes the
d’Alemberian differential operator in the space of antisymmetric tensors and so realizes
the Dirac square-root procedure for spin 0 @ 1. This equation can be rewritten also in
the equivalent Dirac-type form [5]

(v p—m)p =0, o
where v = (y,,,,) carries two Dirac bispinor indices, while y* are the usual Dirac 4x 4
matrices acting on the first of these indices. The second bispinor index is here free, unless
operated on by m. In Ref. [5], this second index was interpreted as being responsible for four
fermion generations and so it lost its original connection with Lorentz transformations
in the physical spacetime.
Recently, it was observed [6] that the Dirac anticommutation relations

{r*, "} = 2g" 2
admit a remarkable sequence of representations given by formulae
N
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! The Kihler equation was essentially discovered much earlier by Ivanenko and Landau [3], soon
after the discovery of Dirac equation [4]. So, it may be called also the Ivanenko-Landau-Kéhler equation.
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N =1, 2, 3..., where the matrices 3}, i = 1, 2, ..., N, span the sequence of Clifford
algebras defined by the anticommutation relations’

{?f, ')’;} = 25118" " 4

For N > 2 the representations (3) are reducible. In fact, for N > 2 there are such represen-
tations of the matrices v, i = 1,2, ..., N, that

rr=y®@1®..01, &)
N—1 times

where y* and 1 are the usual Dirac 4 x4 matrices. Thus, the Dirac equation

(I p—-my=20 ©
can be represented as

(@ p—m)y=0, @)

where ¢ = (Yyq,...ex) Catries N Dirac bispinor indices of which only the first one is acted
on by the Dirac matrices y*. The rest of them are free, unless m operates on this residual
set of indices. Of course, the Dirac-type form (1) of the Kiihler equation is a particular
case of Eq. (7) corresponding to N = 2. So, Eq. (6) together with Egs. (3) and (4) gives
us a generalization of the Kihler equation for arbitrary N, realizing the Dirac square-root
procedure for spin 0 ® 1 @ ... @5 Nor D 3@ ... ® TN, where N is even or odd,
respectively.

However, it is important to note that in an external electromagnetic field, where the
Dirac equation (6) takes the form

- (p—ed)—mly = 0, ®

a particle, if described by y, can display only spin 1/2 due to the Dirac anticommutation
relations (2). It is true for any N = 1, 2, 3, ... . Thus, the total spin of such a particle is
physically divided into an electromagnetically visible part 1/2 and an electromagnetically
hidden part 1+ @ 3@ .. ®F(N-1) or 0B 1® ... ® L (N—1), where N is even or
odd, respectively.

Hence, we get for Eq. (8) two natural interpretative options, where the physical Lorentz
group corresponding to the theory of relativity is generated either by

N
i
= 1 E 5 vl ©
i=1
or by
Jclivlil;le = L’”+%_21~ [F”, Fv]a (10)

with' L* = x*p"'—x’p" and p, = i0/0x". In the first option m is obliged by the theory of
relativity to commute with J*”, while in the second option m must commute with Jii.;;,. but
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not necessarily with Jijgaen = J* —Jihiee Of course, the mass m commutes automat-
ically with J4. since in the Dirac equation (6) m is assumed to commute with I'*
(and is x-independent). Thus, in the second option the electromagnetically hidden spin
is not obliged to be connected with the physical spacetime governed by the theory of
relativity and so may correspond to some other internal degrees of freedom as it was
conjectured in Ref. [5] in the case of N = 2. If, however, all matrices y,i = 1,2, ..., N,
are connected with the physical spacetime (as it is consistent with our construction of the
matrices I'*) this second option is logically excluded in favour of the first.

In this case not only I'* but also all other independent linear combinations of y¥,
i=1,2,..., N, are connected with the physical spacetime. Defining the new matrices

I =T"T% .., It (11)

by means of the Euler linear combinations of y%, y5, ..., Yk we get for them the anticommu-
tation relations of the type (4):

{I't, Iy} = 26,;8". (12)

For instance, for N =3
ri= \/3 i+7r2+75).
" 1
Ir; = \72(71 72)s

ry = \/6 Yy +72—2v5). (13)

Note that in Eq. (9) we have now

N N

: : i i
% 5[?’:‘,7:]=%Zz[r5‘,rn, (14)
i=1 i=1

so that
N
: : i

Jﬁrdden = J¥— eivsible = % _5 [Fl:a F:] (15)

i=2

In this case m must commute with Ji}y,, since it is obliged to commute with J** (and

is assumed to commute with I’} = I'¥). Then, the mass m may depend on I', ..., I's but

only via their invariants under the hidden Lorentz group (and is independent of I'f).
From Eq. (8) and its Hermitian conjugate we can deduce that

(W*F iriy) = (16)
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as well as
0
-1 3 ('ISrs ... Iy) = 0, (17

the second conclusion being valid only when m commutes with the matrix I'ST’; ... I'y
and Nis odd, N = 1,3, 5, ... (the first one is true, for m commutes with I’ ?9). Here, the
phase factor ny_, makes the operator ny_,I' ... I'y Hermitian. The conserved current
appearing in Eq. (16) is not covariant under the full Lorentz group generated by J*,
though it is covariant under the visible Lorentz group generated by J%j ;... In contrast,
the current in Eq. (17) is covariant under the full Lorentz group. We can see that under
the assumption that the physical Lorentz group corresponding to the theory of relativity
is generated by J*’, the chance for probability interpretation of 4 is restricted only to the
case of N odd, N=1, 3,5, ... (thus, the case of N = 2 corresponding to th€ original
Kihler equation is then excluded). Note that in the case of N odd and m commuting with
rory ... ry the Hermitian operator ny_,I'S ... I'y (whose square is the unit operator)
is a constant of motion, so one can impose on y the condition

My-1T2 .. Ty = 9 (18)
which guarantees that

An-19T2 ... Tyyp >0, 19)
where the spatial integral of the left-hand side is constant in time due to Eq. (17).

Above, we restricted ourselves to the formal structure of the Dirac-type form of the
generalized Kahler equation given by formulae (8), (3) and (4). The question of the possible
physical interpretation of this handsome equation realizing the Dirac square-root procedure
in a general way is entirely open.

In this paper we would like to make the conjecture that the generalized Kéhler equation
with N = 3 is in a way physically distinguished, giving us a model for fermion generations
i.e., for the first-generation leptons (v, or e~} or quarks (u or d) as well as their higher-
-generation replicas.

For N = 3 we can use the following representation for I'Y, I'} = il§I't['}I'} and

i
=gt ([, IT] = DILVT:

‘=11, ri=y"’1e1l,
=yl rn=10yeL
=y"@y®y [[$=191Q)° (20)
and
H=d®111,
H=18s11,
=191 (21)
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1
where 7%, 95 = iy%1y%3, 1 and ¢* = %8"""-2— [y, Y™ = y5y°* are the usual Dirac 4x4

matrices. Hence, in the case of N = 3 the wave function g = (¥,,,,,,) describes two Dirac
particles with hidden spin 0 and two Dirac particles with hidden, spin 1 since there are
two eigenvalues +1 of the operator I';I'3 commuting with the operators of hidden spin
%(f ,+25) and hidden parity n,I'9'S (1, = i), where the only acceptable eigenvalue
_ of the latter operator is + 1 due to the condition (18) (true in our first interpretative option).
Thus, for instance, in the case of the electron family one may try to make the following
tentative identification:

N Visible spin  Hidden spin I'ilS Z,-Z,

e 3 12 0 +1 -3
p- 3 12 0 ~1 -3
- 3 12 1 +1 1
>~ 3 12 1 ~1 1

So, the fourth fermion generation is here predicted unavoidably,

If two hidden-spin triplets 7~ and ?- existed in the electron family, there would also
exist the corresponding hidden-spin triplets v, and ?° in the neutrino family. Then, because
of the separate conservation of hidden spin (holding in our first interpretative option)
the decay rates for W= — () +v,(?9) and t(?-) — p~+v, +v,(?°) get no multiplicity
factors coming from the hidden spin. This is due to the hidden-spin singlet character
of W~ following from the universality of electroweak gauge bosons in the standard model.

In the case of -~ the absence of such factors is consistent with the actual experimental
data [7]).

On the second-quantization level of the theory, the generalized Kahler fermions
with ¥ = 3 can be easily included into the scheme of standard model instead of four
generations of sequential fermions. Then m = 0 and fermion masses arise from a more
or less involved Higgs mechanism and from radiative corrections.

For instance, in the case of leptons there are a weak isospin doublet with N = 3,

{e)

YL
= v 1 22
YL (ng‘ )) (22)

and a weak isospin singlet with N-= 3, ¢{, where y g = 3 (1F I}y (and, of course,
Y = (Y,,0;0,))- Then, one may consider the following phenomenological lepton-higgs
coupling:

Yir ?(hs¢s+h_P¢PF ST3+hypyilsT 3u
+hadail3I3I5T anthedr s 2825, )p+he, (23)

where

¢s = (‘ig, ) etc., 24
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are five higgs weak-isospin doublets and 4,, etc. stand for Yukawa coupling constants.
Here, 2} = % [vf, 7i}. In Eq. (23) n.I S (g, = i) is put equal to 1 due to the condition
(18). Making use of the formulae

ilsT,, = iF3r(1—I3r38, - 25) (25) -
and _

3 I3 B, = (14 T3TDHE; - I, (26)

we obtain from Eq. (23) (in the tree approximation) the following parametrization of
charged-lepton masses:

m, = hgts+ hpvp+4hyvy +4hav, —6hyvr,
m,, = hgvs—hpvp—2hyvy+2h,v,,
m, = hgvg+ hpvp+2hvy, (27)
My= = hgOg— hpvp + 2hyty —2h,0,,
where v, = (¢ Dyacuum> €tC., While the neutrinos v,, V., v, 70 get zero masses. Since m, ~ 0,
Eq. (27) gives
m, = % (hsvs+ hpvp+ hyvy + havy). (28)
For instance, if Ayvy ~ —k,v,, Egs. (27) and (28) reduce to
m,, & hgog— hpvp—4hyvy,
m, =~ % (hgvs+ hpvp), 29)
Myx o hgvg— hptp +4hyty
and hence
hsvs =~ 3 (m,- +mu+% my) > 0,
—hpvp = § (My-+my—3m) >0, (30)
hyvy = §(me-—m) > 0,

where it is expected that m,. > m, since 7- is not seen experimentally yet.

Of course, the most characteristic feature of generalized Kahler fermions with N = 3
as discussed in this paper is the existence of hidden-spin triplets. However, their multi-
plicity coming from the hidden spin is usually invisible due to the hidden-spin conservation.
In fact, a question arises, in what a situation it can be visible. An answer is that, in principle,
it can be visible in the annihilation process of tauonium t-t* into photons since the bound
system 7-7+ may get three different hidden spins 0, 1, 2 (if - is really a hidden-spin triplet),
of which only the state Q0 can annihilate into photons that are hidden-spin singlets. This
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gives an additional factor 1/3 in the radiative life-time fo an average tauonium z-t+ in
comparison with the positronium e-e* or muonium x—u* which get only one hidden spin 0.

Finally, let us note that in general the condition (18) imposed on y spoils the
covariance of the wave function under the hidden boosts, though the covariance under
hidden spatial rotations as well as under all visible Lorentz transformations is not spoilt. The
violation of covariance under hidden spatial rotations would genérally introduce mixing
of lepton generations. The last observation may be relevant for quarks, where generation
mixing really appears.

APPENDIX

At the very end we would like to add a remark on the previous interpretation of
the generalized Kéahler equation with N = 1,3, 5, ... in terms of fermion generations,
as it was presented in the part one of this paper [6]. The principle mentioned there, needed
to terminate the sequence N = 1, 3, 5, ..., could be actually provided by a new “intrinsic
Pauli principle” requiring that the wave functions ¢ = (y,,,, ..), N=1,3,5, ..., must
be antisymmetrical in the Direc bispinor indices a5, ..., ay. In fact, in contrast to the Dirac
bispinor index «, describing the visible spin 1/2 (and visible chirality + 1) of our generalized
Kaihler fermions N = 1, 3, 5, ..., the indices o, ..., ay refer to N-1 hidden spins 1/2 (and
N-1 hidden chiralities +1) which can be considered as physically identical (of course,
[2, 21 = 0 for i # j and [I'}, I'j] = O define independent indices oy, &5, ..., ay). Then,
the sequence of N must terminate at 5: N = 1, 3, 5. Moreover, for N = 1 and for N = 5
there exists only one Dirac particle with total hidden spin 0 and total hidden chirality +1,
while for N = 3 there are only two Dirac particles with total hidden spin 0 and total hidden
chiralities +1 and —1 (here, the condition (18) is, of course, applied). Thus, in this case
there appear together foyr versions of any lepton and quark, all with total hidden spin 0.
Hence, four fermion generations should exist. Assuming in addition that only fermions
with total hidden chirality +1 can interact, the effective number of fermion generations
may be reduced to three, what is the presently favored figure.
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