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Using thermofield dynamics we study finite temperature effects on strings in curved

space.
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In recent years there have been numerous studies in string theory [1]. In particular,
thermodynamniic properties of strings have been studied extensively [2-8]. However, in all
these cases strings were considered in flat space-time (the reason for this is that it is not
always easy to formulate string theory in curved space-time) and in this paper we shall
study thermal effects on string in curved space. Here we shall follow the method of de Vega
and Sanchez [9] to quantize strings in curved space and shall examine the possibility of
stabilizing the tachyonic ground state through thermal effects.

To start with let us first consider the action for a string in an arbitrary D-dimensional
manifold:

i _
S =— jdadt Vg 876G 5(X)2,X"0,X°5, %))
2na
where G ,45(X) and g** denote respectively the space-time metric and the world sheet metric.
In the conformal gauge the string equations of motion are
XA+ Ta(X)0XB0xC = 0, )

where I'go(X) denotes the Christoffel connection.
The centre of mass motion is given by

3*(1)+T'3c(9)q°(x) = 0. ©))
Then one writes

X4, 1) = q%0, D +n(o, ) +&(a, D+ ..., “)
(209)
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where ¢“(o, 1) is the exact solution of equation (3) and the other terms are perturbations
around ¢*(o, 7). We note that for all types of curved spaces, the equations of motion do not
admit solutions; hence we specialise to de Sitter space for which there exists exact solutions.
The metric for the de Sitter space is given by

2
ds? = (.-;l?,—) [(dX°?-(@dx)*], 1<i<D-1, &)

where R, = H-' = 3/A and the curvature scalar is given by R = HD(D—1). In this case
we have

m m
q°(v) = °—‘—‘—g~—~— s, ¢'@=r- &M coth (gm7),
r sinh (gm7) r
. R D—-1 )
d@=r, 2<i<g<D-1, =Y p" (6)
i=t

Using (6) the first order perturbations can be found and are given by [10]

1%z, 6) = m [4(s, 1)+ B(s, 1) cosh*(mgr)],
n'e, 1) = — m [B(a, 1)+ Ay(o, 1) cosh*(mgr)],
Afo,
Mo = —X2D i<y, @
P sinh (mgrt)

where

Aa(d', ‘r) = z ['y:ei('"’ —wnt) + y;'f+e_ i(na~ w,.t)],
n

B(O', T) = Z [ﬂnein(a—t)_'_ﬁ:e—in(a-i‘f)],

Bo=Blu B =B-w w,=n*-mg, 8)
y and f operators satisfy
) m? gz m? gz‘
i.y:’ yf+] = dw 5"’5(:[3’ [ﬂm ﬁl] = dnh 6n+l,0' (9)

In this case the mass spectrum is given by [10]

p-1

m? 2 z : 2 E at a 2,

-5 = (D—1)e(m™)+ 2,(m%) ay” a,+0(g"), (10)
n¥0 2=1
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, mg?
Q,,(mz) =V nz—m2g2+ TE—— 11
2Vn?—m?g (D
g(m?) = ¥ 2,(m?), (12)

o on=1

2. /7w, L
PEENLF . (13)

mg R

Using {-function regularization it can be easily shown the ground state is tachyonic and
the coresponding mass given by

mé = — g—)_—l) (14)

12

we shall now examine whether the ground state can be stabilized at finite temperature.
In order to incorporate finite temperature we shall follow the thermofield dynamics
approach [11]. In this approach the degrees of freedom is doubled with the introduction
of tilde states. Thus, for example, there are operators a® acting on the tilde states. These
operators have the same commutation relations as the non-tilde ones and they commute
with the non-tilde operators. Hence

[a5, ah] = [az, ah'] = 0. {15)
For any thermodynamic calculations it is necessary to determine the forms of the operators
at finite temperature and these are given by

a’(B) = a’ cosh 6%(B)+ai* sinh 6%(B), (16)
a%p) = aZ cosh 0%(B)+a®" sinh 0%(f), an
where
) 1 —$8nj2
cosh 0;‘,(ﬂ) = m, sinh 0;‘,‘([3) == (1—_——e__pn) . (18)

It is clear that the creation operators can be obtained by taking hermitian. conjugates of
(16) and (17). At this point we note that (16) and (17 together with their conjugates are
invertible i.e., zero temperature operators can be expressed in terms of the finite tempera-
ture ones. For example we can write

ay = a;(B) cosh 85(B)+a; " (B) sinh 67(H). 19

Using these relations the mass spectrum at finite temperature is found to be

[<+]

nm2 R
- = (D—De(m*)+ Z Q,(m*) Z [as " (B)az(B) cosh® 63()
a=1

n=1
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+aj(B)a;” (B) cosh G7(B) sinh 6;(B)
+a, " (B)as(p) sinh 63(B) cosh 3(8) +a;(B)ay* (B) sinh? G5(8)]. 20)

From (20) it follows that the mass of the thermal ground state is given by

_ﬂ"

’l_ = (D—De(m2)+(D— 1)2 ,,(mo) o 1)

It is clear that the ground state mass (which is negative at zero temperature) is to become
positive at finite temperature then it will vanish at a certain temperature, T,(= 1/8,) given by

Z i "’°"> =T (22)

Before we proceed to find T, from (22) it is necessary to show that the series in the L.H.S.
of (22) is convergent. To this end we note the following inequality:

6] o o
z : : : ne * 2 :
ne ™ = e-x(l—-e—x)_z < S = N — < (1-—e"x) ne
—e
’ n=1 n=1

n=1

=e ¥(1l—e 973 (23)
Hence the series on the L.H.S. of (22) is convergent. Evaluating this series we find
T, ~ 0.118 =. (24)

Therefore, for T > T, the ground state mass shifts to a positive temperature dependent
mass while for T < T, the ground state mass remains negative. In other words, at tempera-
ture greater than the critical temperature T, the tachyonic ground state becomes stabilized.
It is also interesting to note that since e ?’(1—e ™ #)™ 50as f> oo forall N> 0,5 -0
as ff - o and from (21) we recover the zero temperature situation.

In this paper we havé shown that for bosonic strings in curved space, namely de Sitter
space, the tachyonic ground state becomes stabilized beyond a critical temperature T, given
by (24). It may be noted here that the possibility of this sort of phenomena was conjectured
by Leblanc [8] in case of string in flat space.
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