Vol. B21 (1990) ACTA PHYSICA POLONICA No 3

NUCLEAR MATTER APPROACH TO THE HEAVY-ION
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A simple theory of the heavy-ion optical potential ¥°, based on the local density
approach and the frozen density model, is used to derive the energy dependent proximity
approximation ¥ T for the complex potential ¥". Both ¥" and ¥* are calculated, and the
accuracy of the proximity approximation and of the scaling law implied by the approxima-
tion is tested.

PACS numbers: 25.70.—z

I. Introduction

In the present paper, the simple nuclear matter (NM) approach to the heavy-ion
(HI) optical potential ¥~ = ¥p +i¥" presented in [1-3] is compared with the proximity
force approximation of Blocki, Randrup, Swiatecki, and Tsang [4]. These authors formu-
late the proximity approximation for vanishing energy of the colliding ions, where ¥ = ¥ 5.
We extend the approximation to non-vanishing energies and to the complex potential ¥,

The NM approach of [i-3] is based on the local density approximation: the two
colliding nuclei are described locally as two interpenetrating nuclear matters moving against
each other. For the local density and momentum distribution, the frozen density model is
applied. The optical potential ¥” is defined as the difference between the energies of the
overlapping and spatially separated nuclei. The energies are calculated in the energy-den-
sity formalism. In a simplified form, the approach was employed a long time ago by Bruec-
kner, Buchler, and Kelly [5]. (Since the pioneering work of Brueckner et al., the approach
was applied in several papers quoted in [1-3].) Whereas Brueckner et al. used locally the
equilibrium momentum distribution, the momentum distribution applied in [1-3] corre-
sponds to a relative motion of two nuclear matters. This leads to a complex effective two-
-body interaction, and consequently to a complex optical potential ¥°, whereas the poten-
tial calculated by Brueckner et al. was pure real.

In the proximity approximation of [4}, the calculation of ¥, based on the frozen den-
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sity approximation, is divided into two steps. In the first step, one calculates the proximity
force function ¢(s), i.e., the ineraction potential per unit surface between two semi-infinite
slabs of NM as a function of the distance s between the two slabs. In the second step, one
approximates ¥~ by a superposition of interaction potentials between two slabs of NM at
properly chosen distances s. The resulting potential in this approximation is denoted by
vr.

In the present paper, we derive the proximity approximation from the NM approach
of [1-3] by introducing in this approach approximations valid for sufficiently large sepa-
ration of the two ions. We compare the results for ¥F with those obtained for ¥~ (with
the same NM approach but without the proximity approximation), and thus test the accu-
racy of the proximity approximation.

The proximity force function ¢ was calculated in [4] for vanishing relative velocity
of the two slabs of NM. Consequently, ¢ was real, and the resulting ¥ (at zero energy
E of the colliding nuclei) was also real. In our NM approach, we take into account the re-
lative velocity of the two slabs and obtain a more general proximity function ¢ and proximity
potential ¥, which depend on the energy E and are complex for E > 0. (The energy depen-
dence of pure real ¢ and ¥* was first discussed by Moszkowski [6].)

The paper is organized as follows. In Section 2, the NM approach to the HI optical
potential ¥~ is outlined with a more detailed description of the frozen density model which
is improved compared to the model applied in [1-3]. In Section 3, we derive from the NM
approach the proximity approximation for ¥°, ¥ . In Section 4, results obtained for ¥~
and-¥'F are presented and the accuracy of the proximity approximation and of the scaling
law implied by this approximation is discussed.

2. The NM approach to the HI optical potential
2.1. The definition of ¥

We consider two nuclei, 1 (target) and 2 (projectile) (with masses M, M,, and with
the reduced mass py = M, M,/[(M+ M,)), moving with the relative momentum Kgg
(in units of h). We denote-by R the relative position vector between the centers of mass of
1 and 2 (directed from 1 to 2). The definition of the optical potential ¥~ as the difference
between the energies of the overlapping and spatially separated nuclei 1 and 2 does
not depend on the reference frame. As the most convenient one, we choose the rest frame
of 1, which we call the ’laboratory* (lab) frame (at R = o0, it coincides with the laboratory
(LAB) frame of nuceli 1 and 2 with nucleus 1 being the target). In this frame

Y(E; R) = &10p(Kzgr, R)— B2K3/2M 3~ 61 D)~ E1s(2), )

where &;, (i) is the intrinsic nuclear energy of the isolated nucleus i, &y, is the nuclear
energy of the total system in the lab frame, and

K, = (M,/1)Kgg; (2.2)

is the projectile momentum in the lab frame.



225

The conservation of the total energy implies that the instantaneous relative momentum
Kger = Kgg (R) (and consequently also the projectile momentum K, = K,(R)) is changing
with R:

72 Kge (R)*2u+ ¥ R(E, R)+ ¥ ((R) = h*Kgpi(0)?/2m = E, 2.3)
where 7 "¢ (R) is the Coulomb potential between nuclei 1 and 2, and E is the CMS kinetic

energy.
We apply the energy-density formalism, and write &), in the form:

&1an{Krgrs R) = fd"Hlab(KREL, R; ), 24)

where Hy,, is the energy density (in the lab frame) at ». For a given distance R between the
two nuclei, the system is approximated locally (at each point r) by a piece of NM of total
density ¢ and with momentum distribution n(ky). Obviously, we have

e = [4/(2m)*] § dhyn(ky). (2.5

{(We assume that both nuclei 1 and 2 are spin and isospin saturated. Nucleon momenta
in the lab frame are denoted by ky.)

2.2. The frozen density model

For ¢ and n{ky), we apply the frozen density model in which all degrees of freedom are
frozen, except for R. The total local density of the combined system at r is equal to the sum
of the original densities of nuclei 1 and 2:

o(r) = ¢(r)+e,(jr—Rj). (2.6)

(The origin of the position vector r is the same as that of R, i.e., the center of 1. We assume
that both nuclei are spherically symmetric.)

The motion of each of the colliding nuclei resembles that of a rigid body: the instan-
taneous velocity of each point of the nucleus 1 (2) is the same. Thus in the lab frame the
velocity of each point of 1 vanishes, and the velocity of each point of 2 is hK,/M, = hKyg, /1,
and the avarage momentum K, of nucleons in nucleus 2 is

K, = (m/p)Kggy, 2.7

where m is the nucleon mass. Consequently in the lab frame (see Fig. 1), the local momen-
tum distribution at r of nucleons in nucleus ! is the Fermi sphere (surface F, = F,,) cen-
tered in O,, with the local Fermi momentum

ko = ki,o(r) = [3n°0,(n/2]'7, 238

and that of nucleons in nucleus 2 is the Fermi sphere (surface F, = F,,) centered in O,
(with 0,0, = K,), with the local Fermi momentum

ke = ki, o(r) = [3n%0,(1r— R1)/2)]"2. (2.9)



226

(@) Kp> kgyovkeog (b) K< kygtkegg

Fig. 1. The local momentum distribution in two colliding nuclei

For the combined system of nuclei | and 2, we obtain the local momentum distribution
n(ky) consisting of two Fermi spheres F, and F,: n(ky) = 1 for ki within F = F, +F,,
and n(ky) = 0 otherwise.

As long as K, > kpo+ kg0 (Fig. 1a), our definition of n(ky) presents no problems.
If however K, < kg, o+ kg0 (Fig. 1b), the two Fermi surfaces F; and F,, overlap, and we
face the problem of the double occupancy in the overlap region. We resolve this problem
by increasing kg,o — kgy and kg,o — kg2, and obtain our final momentum distribution
n(ky) with the Fermi surface F; +F,, with a single occupancy inside F. This reshuffling
of nucleons from the original distribution 7 with the Fermi surface F,, + F,, (with the dou-
ble occupancy in the overlap region) to our final distribution n should leave the density
¢ unchanged: '

£ = e1+0: = [41Qn)° Ve = [4/2n)°] (Ve, + Vi), (2.10)

where Vg is the volume within F, and V5, (Vg,) is the volume within F to the left (right)
of the plane F,,.

To determine kg, and kg,, we need one equation more in addition to Eq. (2.10). Let
us denote by. kg the average nucleon momentum in the local NM at r in the lab frame:

) ’ ' ' ’ ’ Kr fOI‘ Kr > k 1o+k 20*
kg = J dkyn(ky)ky / f dkyn(ky) = {K i;/ pr otherwise Fio T OF (2.11)
r 2 *

Before reshuffling the nucleons, in the original distribution n, we have kg = K,0,/0 also for
K, < kg 0+kgz0- Let us insist that the reshuffling does not change the total momentum
(equal to kg times the number of nucleons):

VeV = @2/e. (2.12)
Egs (2.12) and (2.10) are equivalent to the following two equations:
Ve, = @n/3)k2, Ve, = (47/3)k3,,, (2.13)

from which both kg, and kg, may be determined (nmnericélly).
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The prescription (2.13) for determining kg, and kg, differs from the simple prescription
of Beck, Muller, and Kohler [7], applied in [1-3], in which both kg, and kg, are increased
by the same amount. The present prescription, applied first by Trefz, Faessler, and Dickhoff
[8], has not only the advantage of preserving the total momentum in the process of the
reshuffling, but it also makes the accompanying increase in the kinetic energy Az (see Eq.
(2.28)) independent of the reference frame in which the kinetic energy is calculated. Actually
the obvious requirement of this independence of At leads to the present prescription.
The point is that the rest frame of NM with the original momentum distribution n coin-
cides with the rest frame of NM with our final distribution n only if kg = K,g,/0. Notice
that for kg, o = k20, the prescription of [7] coincides with our present prescription. Notice
also, that one could preserve the total momentum while applying the prescription of [7]
by properly shifting the whole distribution in momentum space.

2.3.. The real part of ¥

To simplify the presentation, we go over to the rest frame of NM, in which the total
momentum vanishes. The nucleon momenta in this frame are denoted by ky. We have
ky = ky—kg (see Fig. 1), This frame depends on r (is local). The energy density in this
frame is denoted by H, and we have

Hy, = H+(R*2m)kio = H+(h*[2m)K2 03 /0. (2.14)

* Let us consider normal NM (i.c., NM in its ground state) of the same density as the
local density of our system. In this pormal NM, the momentum distribution is no(ky) =
= O(kg—ky), where the Fermi momentum kg = (3720/2)!/3, and the energy density is

HZ" = (Exu/A)e = f(0)e (2.15)
where f(¢) = Exym/A4 is the energy per nucleon in normal NM.
The NM by which our system is locally aproximated, differs from the normal NM by
the momentum distribution » (the two sphere distribution in Fig. 1). We denote is energy
density by H™, and use the approximate relation

Re H™ = HGM+ [4/(27)°]  din[n(kn) — no(kn)Jeo(en) (2.16)

(e, is the s.p. energy in normal NM), which is valid when the difference #n-n, is small. Eq.
(2.16) represents the change in the energy density caused by the redistribution of nucleons
in the momentum space with unchanged s.p. energies. If we expressed the -energy density
through an effective two-body interaction (the # matrix, Eq. (2.33)), then for small n-n,
we would obtain expression (2.16) by neglecting the change in 2" induced by the change
in the momentum distribution.

For the s.p. energy ey, we use the effective mass approximation:

eo(kn) = e(kn)fv+C, (2.17)

where e(ky) = h2kZ/2m, and v = m*/m is the ratio of the effective to the real nucleon mass.
Eqs (2.15-17) lead to the following result for ReH™™:

Re H™ = fo+(t—10)/v, (2.18)
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where 7 and 1, are the kinetic energy densities (in the rest frame of NM) in our system and
in normal NM:

T = [4/2n)*] | dkyn(k)e(kn), o = Tol@) = (3/S)e(kp)e. (2.19)

For the semi-empirical function f(g), we use the form

5
f(@) = (3/5)e(ke) + 1; al(kF/kFO)l’ (2.20)

where kg, is the Fermi momentum at the equilibrim density ¢4, and the coefficients g,
are determined by kgo, by the volume energy of NM, e, = f(@,), and by the compressi-
bility K, = kZo(d*f1k2)o-
For v, we use the form [9]:
v =v(e) = 1/[1+(1/vo—De/e.], (2.21)

where v = v(go)-

Let us notice that in the case when the effectixe two-body interaction is assumed to
be the Skyrme force SKa/b [10], Egs (2.16)—(2.21) turn out to be exact.

So far we have approximated the energy density of our system by the energy density
of the local NM. To take into account density gradient corrections, we follow Brueckner
et al. [11] and add to the energy density of the local NM the gradient correction Hy:

Re H ~ Re H™+H,, (222)
where
Hy = Hy(0) = nw(Vo)*/e+nv(Ve), (2.23)

with 5y = h?/72m. The first term in (2.33) is the gradient correction to the kinetic energy

density, known as the Weizsicker correction. The second term is the gradient correction

to the potential energy density, in which #, is treated as a phenomenological parameter.
In calculating the (real) intrinsic energies &;.(i), we apply the expression:

€ = § dr{fledei+H(e)}- (2:24)

Egs (2.14), (2.18), (2.22), and (2.24) allow us to calculate the real part of &, Eq.
(2.4), and &,,(i), i = 1,2. Results of these calculations inserted into Eq. (2.1) give the value
of ¥'g. The final result for ¥y may be presented in the form:

¥'r(E,.R) = [ drog(K,, R; 1), (2.25)
v = fle)e—fleer—fle2)es +(t—70)[v+Hy(e) —H(e) — Hi(ea)- (2.26)

In deriving this expression, we used the relation (see Egs (2.2), (2.7)):
h2K22M, = (h2KZ[2m)M,/m = (h*KZ[2m) | dro,(jr—R)). (2.27)

Notice that M,/m = A, = mass number of nucleus 2. Of course the integral in (2.27) is
not affected by using in ¢, the argument |[r-R] instead of r. The same remark applies to
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expression (2.24) for &,, (2). Thus we are consistent in our notation ¢, = g,(jr-R|) (and
2. = a.r).

We may rewrite expression (2.26) in the form which visualizes the different factors
contributing to ¥x:

vp = At+{(t—10) A /v—1)+"()e— " (e1)e, — T (0202}
+[Hy(0)-Hy(e)) - H(e,)]- (2.28)

By 4t we denote the increase in the kinetic energy density of the local NM caused by
the Pauli blocking, i.e., the increase accompanying the reshuffling of nucleons from the
momentum distribution n to the distribution n:

At = 1—% = t—[10(0,) +0(ez) +(h*K2[2m)e, 0, /0], (2.29)

where 7 is the kinetic energy density of NM with the distribution n. Obviously 47 = 0
for K, > kgio+kpao (no Pauli blocking).

In deriving expression (2.28), we have split the energy density of normal NM into the
kinetic energy and potential energy part:

fle)e = (@) +/7"(0)e, (2.30)
where obviously (see Eq. (2.20))

5

fPOT(Q) = z at(ks/k&,)l- (2.31)

1=3

The term (t-70) (1/v-1) in (2.28) originates in the momentum dependence of the s.p.
potential in NM. Thus all the terms in the curly brackets in (2.28) represent potential energy
densities in homogeneous NM.

The terms in the square brackets in (2.28) represent the gradient corrections to the
kinetic and potential energy densities. In the Weizsicker approximation, the corrections
to the kinetic energy density do not depend on the collision energy E, similarly as the cor-
rections to the potential energy densities.

2.4, The imaginary part of ¥

We assume that H™™ may be expressed through an effective two-body interaction,
the Brueckner reaction matrix ¢ :

H™ = 1[4/2n)*T? § dk,n(k,) § di,n(k,) <kl 1k, (2.32)

where k = (k;—k,)/2. The complex 4 matrix, which depends on the conserved total
momentum 2K of the two nucleons 1 and 2, K = (k, +k,)/2, is defined by the equation:

H = vny+onn[Qf(x+im)]X, (2.33)
where vy is the NN interaction, Q is the exclusion principle operator,

Q = [t—n(k)] [1-n(k>)] = [1-n(K+ k)] [1-n(K-Kk")], (2:34)
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and
o = e(ky)+e(ky)—e(ky)—e(k?), (2.35)

where kY, k% are nucleon momenta in the intermediate states (in the rest frame of NM),
and k' = (K, —K})2.
Eq. (2.33) implies the optical theorem:

—2Im (k| |kY = 2m)2 [ dK'Q(K, K'")d(ar) [<KK"' |4 1kD|2 (2.36)

Now we make the following approximations:

— We assume for the s.p. energies e in (2.35) the effective mass approximation with
the same value of v as in e, Eq. (2.17).

— We assume (for k'’ = k) the relation

[ml4mh )P | 1)) = o, (2.37)

where 6 = (0,40+0,,)/2 (0,4, and o, are the total nn and np cross sections). This relation
is exact for the reaction matrix for two isolated nucleons, and for the isotropic NN cross
section.

With these approximations, we obtain:

=ImH™ = — v(hZ/ZM) [4/2n)*]? | dkyn(k,) | dk,n(k,)Q(K, K)ka(k),  (2.38)
where

O(K, k) = (4m)~" { dkQ(K, k). (2.39)

Since iv; is the only imaginary quantity which enters into definition (2.1) of v , we get
for ¥7; the expression

¥(E, R) = [ dro(K,, R; v), (2.40)

usually called the “frivolous model* expression for 7.
With the two-sphere momentum distribution of Fig. 1, one may obtain an analytical
expression for the angle-averaged exclusion principle operator Q, given in Appendix in

[1]. (Let us correct two missprints there: —{ in expression (A.22) for 2 should be replaced
by +{, and the whole right-hand side of this expression should be multiplied by 2r.)

3. The proximity approximation

Our final result for ¥~ is:
Y(E,R) = {dru(K,, R; r), 3.1)

where v = vg 4 iy, with y given by expression (2.38) and vy by expression (2.26) which
may be written (with the help of (2.10)) in the form more convenient for our present consi-
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derations:

ve = [f(@)—flea)]e+(—10)[v—(A*KZ[2m)e,0;/0 + H (o)
2
- igl {[f(e)—Sf(eo)]e:i+Hy(e)}- (3.2)

We want to show that for sufficiently large separations R, one may approximate our
expression (3.1) for ¥" by a superposition of interaction potentials between two semi-
-infinite slabs of NM. This is the proximity approximation, formulated in a more intuitive
way by Blocki; Randrup, Swiatecki, and Tsang [4]. For deriving this approximation, we
need the expression for the intéraction potential between two slabs of NM, defined, as the
difference between the energy of two overlapping and spatially separated slabs. We start
with calculating the energy of one slab of NM.

3.1. One slab of NM — the surface energy
We consider a semi-infinite slab of NM with the density distribution

0(2) = go/{L+exp [(z—Z)/a]}. (3.3

We assume here (similarly as in [6]) that the surface has a Woods-Saxon (WS) profile.
Let us mention three ways of defining the surface of the slab (see, e.g., [12]):
(a) The half-fall distance Zb:

o(Z" = o(—)/2. (3.4a)
(b) The sharp distance Z" of the equivalent uniform distribution ¢"(z) = ,8(Z"—z):
fdze(z) = [ dzo"(z) = A,/S, (3.4b)

where A4, is the number of nucleons in the slab.
(c) The central distance Z°:

Z° = [ dzz[~ 05 ‘de(2)/dz]. (3.4¢)

For the WS density (3.3), we have Z" = Z" = Z° = Z, and thus we avoid the subtle
discussion (see [4]) of the proper choice of the position of the surface of our slab. We make
the obvious choice and define as the surface of our slab the plane z = Z, which is simulta-
neously the half-fall plane, the equivalent sharp plane, and the central plane.

The diffuseness of the surface of our slab is determined by g, connected with the 10-
~909% distance ¢, and with the surface width b by:

t=(n8a, b= (n/\/a, 3.5)
where

b? = [ dz(z—Z°)*[— g ‘de(z)/dz]. (3.6)
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To calculate the (intrinsic) energy &;, (slab) of our slab, we apply the energy-density
method of Section 2:

Eulslab) = | dr[ fle(z))e(2)+H (e(2))]
= [ dr{fleo)e(2) + [ f(e(z) —fleo)]e(2) + H(e(2))}
= g,ad,+7S, 3.7

where S = fdx{dy, and the surface energy parameter y (surface energy per unit surface,
i.e., the surface tension) is

Y= Yot V¢ (3:8)

where y, is produced by the deviations of ¢ from the uniform distribution ¢* ({dzf(go)e
= [dzf(g")g"~see Eq. (3.4b):

Ye = § dz[(e(2)) ~feo)]e(2) = al, (3.9)
1, = [d{[flo—fleo)les ¢ = za, (3.10)
and ypy originates from the density gradient terms:
¥y = § dzH (e(2)) = (o/a) [nwlw+ onvIv], (3.11)
Iy = [dl(dyld)*|y, Iy = [dldy/d)’, vy = eleo. (3.12)

For our g, Eq. (3.1), we have Iy = 1/2 and I, = 1/6.
We may fix the value of g, i.e., the diffuseness of the surface, by minimizing &,,:
0&;4/0a = 0. This minimization leads to:

a = {(o/1,) [nwlw+ eonvIv1}'??, (3.13)
Yo = vy = {eol[nwlw+ gonvIv]}'", (3.14)

which implies the linear relation between y and a:
y = 2l,a. (3.15)

3.2. Two slabs of NM

We consider two slabs of NM, 1 and 2, facing each other and moving against each other
with the relative momentum Kgg,. Their instantaneous distance Z,, is defined as the dis-
tance between the half-fall planes of the two slabs. We choose the z-axis perpendicular
to the two planes, direct it from slab 1 to slab 2, and place the origin of the coordinate
system at the half-fall point of slab 1. The density distributions in slab 1 and slab 2 are:

01(2) = eo/{1+exp [z/al},  0.(2) = eo/{1+exp [(Z,,—2)/a)]}- (3.16)
The density ¢ of the combined system of the two slabs (in the frozen density model) is:

0(z) = g4(2)+0,(2). 3.17)
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We denote by %(E, Z,,) = Ug+i%; = V'[S the optical potential per unit surface
for the two slabs. By applying expressions (3.1-2) and (3.7), we get:

UE, Z15) = [ dzu(K,» Z155 )2, (3.18)
w(K,, Z12; 2) = [Q)—Aeo)le+G—to)/v— (WK} [2m)e,ele+Ho),  (3.19)

and
U(E, Z,,) = [ dzn(K,, Z,,; 2), (3.20)

where v; is given in Eq. (2.38), in which the density distributions are now those of Egs
(3.16-17).
We follow [4], and define the dimensionless proximity function

¢(E, S) = ¢R+i¢l = %/2)‘, (3.21)
where s = Z,,/a. We have:
Oo(E, s) = [dzug(2y—1, ¢y = [ dzvy/2y. (3.22)

Notice that our proximity function ¢ is complex and energy dependent. Only for £ = 0,

¢; = 0, and our ¢(0, 5) = ¢g(0, s) becomes the pure real proximity force function consi-
dered in [4].

3.3. The HI optical potential

We consider two spherical nuclei i = 1 and i = 2 with mass numbers 4; and with
the WS density distributions:

oir) = oo/{1+exp [(r—R)/al}. (3.23)

We assume that R; > a. In this case, the half-fall radius R? = R,, and the central radius
R{ = R,. (For R;>» a the definition of R°® coincides with definition (3.4c) of Z°) The
equivalent uniform distribution g} = @o(R —r) has the sharp radius R} = ro4;’> (where
re = (47:90/3)'” %), which is determined from the condition (compare (3.4b))

§ drr*e(r) = { drr*gi(r), (3.24)
(V] . 0
which leads to (see, e.g., Elton [13]):
R; = RY[1—1 (na/RY)*] = roA}?[1 =1 (rafro)* 47 3] (3.25)

Thus we have R' = R = R, < R}.
We start with expression (3.1) for ¥°, which we write in the form:

¥(E,R) = [dx [dy[dzv(K,, R; 7., z) = [ dx [ dyo(K,, R; 1), (3.26)
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where
W(K,, R; r)) = | dzvo(K,, R; ry, 2). (3.27)

Similarly as in Section 2.2, we place the origin of the coordinate system at the center of
nucleus 1, and direct the z-axis toward the center of nucleus 2. Because of the cylindrical
symmetry, v depends (through the densities ¢, and ¢, — see Eq. (2.6)) only on z and r,
= (x2+y2)f/2.

~ We want to show that for sufficiently large separations R of the two nuclei, the exact
(within our: energy-density approach) expression for ¥°, Eqs (3.26-27), goes over into the
proximity approximation of [4]. We consider such large separations R, that the two nu-
clei do not overlap over an appreciable fraction of their volume, which means that approx-
imately R X R, +R, or at least R should not be much smaller than R, +R,. For such
values of R, we have in the overlap region

r, <R, and r; <R, (3.28)

Since only the overlap region contributes to ¥°, in approximating v, we shall assume in-
equalities (3.28) also outside the overlap region. Of course, the nuclear surface is diffused
and the definition of the overlap region is not very precise. We may define it as that part
of the configuration space whose contribution to ¥” is dominant, and we consider such
large values of R that (3.28) is satisfied in it.

The densities g, and gz‘, which enter into u(K,, R;r,) (see Egs (3.2), (2.38)), are:

01(r) = go/(1+exp [("1.2'*‘22)1/2 —R,]/a}) = &,(2),
o:(Ir—Rl) = go/(1+exp {[(r1 +(z—R)*)*~R,]/a}) = §,(2). (3:29)

First let us discuss ¢,(z) which as a function of z does not have the WS shape of the
original density ¢,(r), Eq. (3.23). For the half-fall distance Z; and the 10-90%, distance
t, of the distribution @,(z), we get (under assumption (3.28)):

Z% = Ry—r2[2R,, 1, = [1+(r /R)*2], (3.30)

where ¢ = (In 81) a is the 10-909/ distance of the original WS distribution. The inequality
t; > t simply reflects the fact that for r . > 0 the nuclear surface is not perpendicular
to the z-axis, and the density at r, > 0 as a function of z, g,(z), has a more diffused profile
than the original density ¢,(r). However for r, < R, the surface remains almost perpendic-
ular to the z-axis, thus the difference between 7, and ¢ is very small (of order (r,/R,)?),
and we neglect this difference. Furthermore, we approximate ¢,(z) by an equivalent WS
distribution with the same half-fall distance Z} and the same 10-90% distance f, = ¢
as the distribution ¢,(z):

1(2) = 0o/(1+exp {[Iz| —(R, ~r1/2R,)]/a}). (3.31)

Of course for r;, = 0 the nuclear surface is perpendicular to the z-axis and Eq. (3.31)
is exact.
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We proceed with ¢,(z) in an analogous way (the procedure is identical with z’ = z— R),
and get:

3:(2) = eol(1+exp {[IR—2|—(R, ~ 12 [2R,)]/a}). (3:32)

Within our small overlap region, we have |z| = 2 and |R—z] = R—z. Since values
of ¢, and g, outside the oxerlap region are irrelevant for the resulting value of 7, we may
safely remove the absolute value signs in (3.41-42), and thus we get our final approxima-
tion:

8,(2) = go/(1+exp {[z— (R, —r}/2R,)]/a}), (3.33)
0:(2) = go/(1 +exp {[(R—R, +r}[2R,)—z]/a}). (3.34)

After lifting the absolute value signs in (3.31-32), we have g, = g, for z < 0, and
02 = go for z > R. Thus the new densities g, and g,, Eqs (3.33-34) represent the densities
of two semi-infinite slabs of NM facing each other, and separated by the distance

Zi; = R=R,~R,+r}[2R,,, (3.35)
where R,, = R;R,/(R, +R;). Hence, according to Section 3.2, we have:
E = %(E9 212)9 (3'36)

where % = AUy +i%, is the interaction potential per unit surface between two slabs
with the density distributions (3.33-34) (see expressions (3.18) and (3.19) for % and %,).
Although expressions (3.33-34) (and thus expression (3.36)) have been derived under
assumption (3.28), we shall use them also in regions of large values of r,, because these
regions give negligible contributions to v, provided R is not too small.
For our approximate optical potential, which we denote by ¥, we get

¥(E,R) = "If"(E, R) =2=xn j dryr UE, Z,,) = 4nayR,,P(E, so), (3.37)
0
where
B(E, so) = | ds¢(E,s), (3.38)
S0

where ¢(E, 5} is the complex and energy dependent proximity function (see Eqgs (3.21-22),
and

So = (Z12)min/¢ = (R—R;—R,)/a. (3.39)

For E = 0, ¥'* = ¥} coincides with the proximity potential of [4].

4. Results and discussion

First let us list the input parameters of our calculations.
As NM parameters, we use: kg, = 1.35 fm*(go = 1.662 fm~3, r, = 1.128 fm),
£, = —15.8 MeV, K, = 235 MeV, and v, = 0.83. This value of v, has been determined
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by Johnson, Horen, and Mahaux [14] in their analysis of the nucleon-nucleus optical
potential with dispersion relation constraint.

For the total NN cross section ¢ = (0,,+0,,)/2, we use the parametrization of Metro-
polis et al. [15] when the laboratory energy E; > 20 MeV. For E; < 20 MeV, we use
the effective range approximation with the following values (in fm) of the respective singlet
(s) and triplet (t) scattering lengths (@) and effective ranges (r): ag, = —16.1, r,,, = 3.2,
Agp = —23.7, Fgpp = 2.704, a5, = 5.4, 1, = 1.73.

We use the WS profile for the surface, Eqs (3.1), (3.20), with the 10-909 distance
t =25 fm (@ = 0.5689 fm, b = 1.0319 fm). In Hy, Eq. (2.23), we use the value of
nv = 22 MeV fm®, fitted in {2] to the binding energies of %0 and *°Ca. These values
of a and v, inserted into expressions (3.7) and (3.9), give for the surface tension a reasonable
result: y = 0.9796 MeV fm~2.

Let us make a comment on the minimization procedure of determining ¢ = (In 81)a
and 7y, Eqs (3.13-14). To get from Eq. (3.13) for ¢ the empirical value of 2.5 fm, we would
need ny = 78 meV fm®, and would get for y a too large value of 1.4 MeV fm~2. On the
other hand to get y = 1 MeV'fm-2, we would need ny = 33 MeV fm®, and would get
for t a too small value of 1.75 fm. (For ny = 22 MeV fm5, we would get y = 0.87 MeV fm—2
and ¢ = 1.5fm.) The failure of obtaining in the minimization procedure simultaneously
reasonable (empirical) values of ¢ and y is due probably to the simiplified WS form of our
density distribution, and of our Hy (which leads to the linear relation, Eq. (3.15)). In this
situation, we did not apply the minimization procedure, and instead considered 7 and ny
(and thus y) as two independent adjustable parameters,

Our gradient correction Hy to the energy density, Eq. (2.23), contains the Weizsdcker
term. This turns out not to be important. All our results would be changed only slightly,
if instead of Hy we used H9 = n9(Vo)?, provided the surface tension remained unchanged
(1Y = nv+3nw/oo = 32.397 MeV fm®).

As pointed out in Section 2, the relative momentum Kgg; = Kgg (R) depends on R,
Eq. (2.3). Hence also K, = (m/u)Krg, depends on R, K, = K, (R). In the present calcula-
tions, we neglect this R dependence of K,, and put K, = K,(c0). This appears justified in
discussing the proximity approximation which is an approximation for large separations
R, where the difference between K, (R) and K,(0), discussed in [2] and [3], is less important.
Let us add that if we took into account the R dependence of K,, we would loose the simplic-
ity of the proximity approximation.

The connection between E; ,g/A4, (the kinetic energy of the projectile nucleus 2 per
projectile nucleon in the LAB system) and K, = K(co) (in fm~1) is:

EyaplA; = B2K?2m = 20.7 K? MeV. 4.1)
For the CMS Kkinetic energy E, we have:
E = (A44,/(A; + A)]h K] 2m. 4.2)

Our result obtained for the proximity function at E = 0, ¢ = ¢y, is shown as the
solid curve A in Fig. 2. To compare our result with that of [4], where the proximity function
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Fig. 2. The proximity force function ¢ = @g versus Z,,/b at E =0

2w

has been calculated as a function of Z,,/b, we display on the abcissa Z,,/b = (a/b)s =
= ({/3/n)s. Notice that with our WS densities (3.16), at Z,, = 0 the total density of the
overlapping slabs is exactly constant:

oz) = 0,(2)+e(2) = go for Z;, =0. 4.3

This means that at Z,, = O the energy of the combined system differs from the sum of
the energies of the isolated slabs only by their surface energies, thus the interaction potential
U = -2, and ¢ = U[2y = —1. Obviously the energy of the combined system of two
slabs (hence also ¢) reaches its minimum when the density distribution is uniform and
equal g,, and this happens when Z,, = 0. For large negative s, a region of double density
¢ = 29, is formed, which leads to a repulsive ¢ ~ (goa/y) [f(220)—1(20)] Is|.

The proximity function ¢ (at E = 0) calculated in {4] is shown as the broken curve
in Fig. 2. In [4], the Thomas-Fermi approximation with the Seyler-Blanchard effective
NN interaction [16] was applied. The density distribution of one slab was determined
as the equilibrium distribution, -with the resulting values of b = 0.872 fm and y = 1.017
MeV fm~2, which differ from our values. Let us also notice that the Seyler-Blanchard
interaction leads to NM parameters: r, = 1.2049 fm, ¢,,, = —15.677 MeV, K, = 294.80
MeV [17], which also differ from our NM parameters. To make a comparison with [4]
more meaningful, we have calculated ¢ with these Seyler-Blanchard NM parameters,
and with b = 0.872 fm (¢ = 2.113 fm). Furthermore, we applied the minimization proce-
dure, Egs. (3.13-15), which lead to 7y = 73 MeV fm? and y = 1.113 MeV fm3. The result
is shown as the solid curve B in Fig. 2, which for increasing negative Z,, approaches the
result of [4]. The remaining small discrepancy for Z,, =~ 0 appears to be due to the
difference in the density profiles. For the profile of the equilibrium distribution of one
slab obtained in [4] (which differs from the simple WS profile which we assume), there
is no such separation Z,, for which Eq. (4.3) would be exactly satisfied. This explains
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Fig. 3. The proximity function ¢x versus s for K, = 0(0.5)3 fm!

why ¢ calculated in [4] is never equal exactly — 1, and reaches its minimum at separation
Z,, slightly different from zero. Notice also that the central plane and the half-fall plane
(which coincide in the case of our WS distribution) differ in the case of a more general
distribution. This introduces certain ambiguity into the comparison of our results with
those of [4] (where Z,, appears to be the distance between the central planes of the two
slabs).

The dependence of ¢y on K,, i.e., onthe energy E (E/4, = 3 h2K5/2m — see Eq. (4.2))
is shown in Fig. 3. As K, increases, the role of the Pauli blocking and thus the repulsive
contribution Az, Eq. (2.28), decreases. Consequently the interaction potential between
the two slabs, i.e., ¢y becomes more attractive and its minimum is shifted towards smaller
(more negative) values of s. On the other hand, there is the repulsive potential energy
contribution (z—1,) (I/v—1)in Eq. (2.28), which increases with jncreasing KX,. For
K, 2 2 fm~! it becomes dominant, and consequently ¢, becomes again less attractive.
Notice that 47 = 0 for K, > 2kgo = 2.7 fm-*.

For K, > 0, the proximity function is complex. Its imaginary part ¢, for K, = 1
and 2 fm~! is shown in Fig. 4. It represents the absorptive potential which arises from the
two-body mechanism of incoherent NN collisions. Obviously |¢,| increases with increasing
K,, because more and more phase space allowed by the exclusion principle is available for
the final states in the NN scattering.

Our derivation of the proximity approximation for the optical potential ¥"(E, R),
as well as the original derivation of ¥ *(E = 0, R) in [4], suggest that ¥T =~ ¥ for R—R,
~R; 2 0. Furthermore, we used the assumption R;> a, i.e., that nuclei are “leptoder-
mous”, which implies that neither nucleus should be very light. To see precisely how good
is the proximity approximation, we compare the results obtained for ¥~ with the energy-
-functional method of Section 2 (which we call “exact) with the results obtained for
¥? with the proximity approximation of Section 3 (within the same energy-functional
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Fig. 5. ¥'r for *°Ca—4°Ca for the indicated values of KX,

method). We consider the case of two equal spherical nuclei: 4, = 4,, R, = R,, R,,
= R 2.

Results obtained for ¥'(E, R) and ¥(E, R) for two 4°Ca nuclei are shown in Figs
5 and 6. In the present investigation of the proximity approximation, we use the schematic
WS density, whereas in [2] the experimental density was used. Furthermore, our present
value of the effective mass v, = 0.83 is greater than the value 0.7 used in [2]. These are
the main reasons for some differences between the present results for ¥~ and those obtained
in [2]. (Also the R dependence of K,, considered in [2], is neglected in the present work,
and our present prescription for constructing the two-sphere momentum distribution
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Fig. 6. ¥71 for 4°Ca—*°Ca for K, = 1,2 fm™*

differs from the prescription applied in [2].) The dependence of ¥" on R and E (or K,)
reflects the dependence of ¢ on s and K, discussed before.

Results for the proximity approximation ¥* (the broken curves in Figs 5 and 6)
are reasonably close to the exact results for sufficiently large separations R of the two ions.
For small values of R, replacement (3.34) and (3.35) of the densities g,(z) by densities of
semi-infinite slabs is obviously not justified and leads to serious discrepancies between
¥* and ¥. The error committed by this replacement depends on the behaviour of ¢(s)
for large negative s, which depends on X, (see Figs 3 and 4). Thus the magnitude of the
discrepancies between ¥"* and ¥ at small values of R also depends on X,.

The main consequence and advantage of the proximity approximation, Egs (3.37-39),
is that the optical potential ¥'* in this approximation is the product of the geometrical
factor ~ R,, and of the universal (energy dependent) function @ of R— R, — R,. Thus the
best way of investigating the proximity approximation is to plot ¥/R,, = ¥'/(R,/2)
as a function of R—R;—R, = R—2R,. This is done in Figs 7-9. If the scaling low
implied by the proximity approximation is correct, the results for ¥7/(R,/2) as functions
of R—2R, should not depend on A4,. (A direct verification of this scaling low in the energy-
~-density formalism at E = ( has been approximately demonstrated by Ngd et al. [18]
and Brink and Stancu [19].)

In Fig. 7, we show the results obtained for ¥"3/(R,/2) at E = 0 for 4, = 16, 40, and
125 as functions of R—2R,. Our exact results, the solid curves for 4, = 40 and 125 are
indeed very close to each other for R — 2R, 2 —3fm, i.e., even before reaching the
minimum. On the other hand, the 4, = 16 curve for the much lighter 180 nuclei joins
the two other solid curves much later (at R—2R, & —1 fm,i.c., beyond the minimum).
We conclude that our exact results for not too light nuclei (4, > 16) and not too large
overlaps (R—2R, 2 —3 fm) show indeed the scaling low implied by the proximity approxi-
mation. We see also that within this range of overlaps the exact results stay reasonable
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Fig. 8. ¥ r/(R4/2) for two equal nuclei versus R—2R, for K, = 2 fm™

close to our proximity approximation results (the broken f = ¢ curve). However, even
for positive values of R—2R,, there is a visible difference between the exact curves and our
proximity approximation curve. To explain this difference, let us notice that in deriving
the proximity approximation we assumed that the 10-90% distance 7 of the distributions
01(z) and g,(2) is the same as the 10-90% distance ¢ of the original WS distribution. How-
ever, since the surface of the two nuclei are not exactly parallel, we have >t Eq. (3.30).
To see the effect of this increased diffuseness of the surface elements of the two nuclei
facing each other, we also show in Fig. 7 the proximity approximation curve obtained
with 7 = #4-0.1 fm, and see that indeed it is closer to the exact results than the f = ¢ curve.

Our results for ¥»/(R,/2) at K, = 2 fm-! are shown in Fig. 8. The situation here is
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similar as at K, = 0. The only difference is that at KX, = 2 fm~! the scaling low applies
to larger negative values of R—2R,. Notice that ¥y reaches its maximal depth at
K, =~ 2 fm-'.

Our results for ¥ /(R,/2) at K, = 2 fm~! for A, = 16 and 40 are shown in Fig. 9.
Again the situation is similar as in the case of ¥ . We see that the proximity approximation
and the scaling low work with about the same accuracy in the case of ¥ as in the case
of ¥g.

We conclude that for sufficiently small overlaps of the two colliding nuclei, the prox-
imity approximation is applicable as well in the case of E = 0, as in the case of E > 0.
At E > 0 the optical potential ¥ is complex, and the proximity approximation may be
applied equally well to both real and imaginary parts of ¥". The main advantage of the
proximity approximation is, that to obtain within this approximation ¥" for different pairs
of colliding nuclei, it is sufficient to calculate (at each energy) one universal complex
function &(E, s,), Eq. (3.38) (and apply expression (3.37)). In: the case of ¥7, the nice
intuitive picture of the nucleus-nucleus interaction potential offered by the proximity
approximation is probably more important than the computational simplicity, because
our exact expression for ¥, Eqs (2.25-26) is in itself very simple (the application of
Eq. (2.25) requires only a two-dimensional integration). On the other hand in the case
of ¥, the computational simplification introduced by the proximity approximation saves
a lot of computing time. Namely expressions (2.38) and (2.40) for ¥, require performing
a seven-dimensional integration.

Let us summarize the main points of the present paper:

— We have outlined a simple energy-density formulation of the energy dependent

.complex optical potential %" for HI collisions, in which ¥~ is expressed through saturation
properties. of NM and the NN cross section.
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~— We introduced into the energy-density formulation approximations which are
reasonable when the two ions do not overlap too much, and derived a generalized prox-
imity approximation valid for both real and imaginary parts of ¥".

~— We tested the accuracy of the generalized proximity approximation by comparing
the results for ¥ obtained with the energy-density formalism exactly with those obtained
with the proximity approximation.
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