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Initial stages of the phase transition of the neutron matter into strange matter at zero
temperature and finite pressure are considered. Bubble formation is calculated numerically
for pressures typical for a neutron star interior. The critical bubble size decreases rapidly
with pressure, reaching minimum at p ~ 20 MeV/fm?3.
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1. Introduction

Recently much attention has been paid to the strange matter [1-3], which is dense
matter built of u, d, and s quarks. In particular the question whether neutron stars could
be in fact quark stars or have at least a strange matter core has been discussed by many
authors {4]. Even if the strange matter is absolutely stable in bulk, we still have to know
how the phase transition could start. The latter question is not trivial as we know that
at zero pressure we need a very high order weak transition to produce a bubble of the
strange matter which is stable against emitting a neutron [2].

In this paper we calculate the critical size of such strange matter bubbles inside the
neutron matter under pressures typical for the interior of neutron stars. Within the Fermi-
-gas model [2-3] for the strange matter we find that the critical size rapidly decreases with
pressure and, at least for the Friedman—Pandharipande neutron matter [5], is minimal
for pressures of order 1530 MeV/fm®. Such pressures are much below 100 MeV/fm?3,
a typical'central pressure of the 1.4 M neutron star.

In Section 2 we briefly present the equations of state we use for the strange and the
neutron matter. We discuss there also the phase equilibrium in the bulk limit. In Section 3
we describe the strange matter bubble formation, and present, in particular, our results
for the pressure dependence of the critical size. Since 4 contains summary and conclusions.
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2. Equations of state and equilibrium in bulk

In what follows we shall consider cold (T = 0) equations of state. First let us briefly
summarize the strange matter equation of state [2-3].

Strange matter consists of u, d and s quarks. Only s quark is massive and we denote
its mass by m. The flavour equilibrium is provided via weak interactions. The gas is strongly
degenerated which results in more or less the same amount of each flavour. There is a little
less heavy s quarks and we have to add some small number (order 10-* per baryon) of
electrons in order to maintain the electric charge neutrality. The equation of state is derived
in terms of the MIT bag model [6]. We take the strong coupling constant «, equal to 0
and thus we have a gas of free quarks inside a bag. The free energy reads

=~V Y p+BV+ ) wN, 1)
i=u,d,s,e” i=u,d,s,e”
where B is the bag constant and p; and p; are partial pressures and chemical potentials
of i-th species, respectively. Differentiating over V' we get the condition for the pressure
balance:
Y  pi=B+p, 2)
i=u,d,s,e”
where p denotes external pressure applied to the system. This equation combined with
flavour equilibrium and charge neutrality can be solved for the chemical potentials of all
species. Consequently we get all thermodynamic propertjes of the strange matter in terms
‘of two parameters: B and m. For later use we present the formula for the Gibbs energy
of strange matter

G = F+pV = ZﬂiN.’ = UmA, 3
where
Hsm = HutHa+ ts G
is the baryon chemical potential and
A =3 (N,+Ng+N,) )

is the baryon number of the system.

For the neutron matter we use the v, +TNI equation of state derived by Friedman
and Pandharipande [5].

Now we can compare the neutron and strange matter phases at 7 = 0 and external
pressure p. The phase which is realized in the bulk limit is the one with lower Gibbs energy
per baryon (baryon chemical potential). We calculate the strange matter baryon chemical
potentials p,,, for three sets of B and m values:

‘B = 66.0 MeV/fm?, m = 150 MeV, (6A)
B = 66.0 MeV/fm®, m = 180 MeV, (6B)
B =708 MeV/fm®, m = 150 MeV. (6C)
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‘Fig. 1. Difference of the baryon chemical potentials of the strange and neutron matter for three sets (6)
of B and m

At zero temperature and pressure [, is equal to the encrgy per baryon and set (6A) gives
Usm = 903 MeV while both sets (6B) and (6C) give p., = 918 MeV. Thus all three sets
give strange matter stable against decay into neutrons as well as into 56Fe nuclei where
encrgy per nucleon equals to 930 MeV.

In Fig. 1 we show the difference of baryon chemical potentials

AI‘ = Hsm ™~ Hn. (7)

as a function of pressure p. The binding grows significantly for pressures up to about
25 MeV. The reason is that for relatively low pressures the neutron matter is much softer
then the strange matter.

3. Formation of bubbles

Let us consider a system consisting of N— A4 baryons in the neutron matter phase
and a bubble of strange matter (quark bag) of baryon number A under external pressure
p as depicted in Fig. 2. Such a bubble must be produced by fluctuations and we have
to calculate the Gibbs energy of the system in order to know if the bubble will grow or
disappear.

The Gibbs energy reads

G(N, A, P) = Gbag(A’ P)+ Gn(N'—A, p)+Eanrf' (8)

Both Gy, and G, contain finite size effects and E,,, is the surface interaction energy.
First we calculate Gy,s. To this end we find the energy levels in the static spherical cavity
approximation to the MIT bag model [6]. The standard solutions of the Dirac equation
in a spherical well of radius R can be found in textbooks (see e.g. Ref. [8]). Up to normaliz-
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Fig. 2. A strange matter bubble of baryon number A inside neutron matter under external pressure p

ing factor they read

\/ o +m j(pr)Q,(9, ¢) )

'ppﬂc(r) = (_ \/ w—mj{pr)Q jl'a(g’ )

)
where p, w, m are quark momentum, energy and mass; j, ¢ its angular momentum and
z-projection and Q;,,(0, ¢) are spherical spinors. / and I’ are best given in terms of the
“parity parameter” &:

& €
e==+1, Il=j+—, I'=j-—. 10
it 3 i=3 (10)
Under spatial reflection y,,, gets multiplied by i(—1).
Imposing the linear boundary condition
—iyrp =y at r=R (11)

we arrive at the following equation for energy modes

’ \2
jn(x) = 115 +é 1+ (T_Ri> jn+ 1(x)9 (12)
X X

where x = pR and n = j—1.
For each quantum number n and ¢ there is an infinite series x,,;, i = 1, 2, ... of radial
excitations with energies

oy, = vm?*+xZ/R?, (13)

where by L we denote the set eni.
The total energy of the bag with radius R containing 34 quarks reads

Z
E(R) = BV — 7{9 + Z Nl + Z N, (14)
-L L

with
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Fig. 3. Finite size energy Ey; versus bag surface area Sp for the set (6A) of B and m. The numbers at the

curves denote pressure in MeV/fm3. Dashed lines correspond to Egy = 0Sp with ¢ = 10 and 40 MeV/fm?,
respectively

Here V is the bag volume, Z, is zero mode energy [6] and N}, vf and N, &, denote the
number and energy of massless (u, d) and massive (s) quarks at L-th level, respectively.
At finite external pressure p we need in fact the Gibbs energy

Grag(4; p) = E(R)+pV. (15)

To find the actual bag Gibbs energy we have to minimize Eq. (15) with respect to R. In
our numerical calculation we minimize it also with respect to strangeness S (= — number
of s quarks) for each A .

Gy, Obtained in this way contains finite size energy. We calculate it as

Efs = Gbag(Aa p)'-Aﬂsm(p) (16)

In Fig. 3 we show E;, versus bag surface S = 4nR? for m = 150 MeV, B = 66 MeV/fm?
and p =0, 15, 50, 100 MeV/fm®. Two dashed lines correspond to E;, = ¢Sy for
o = 10, 40 MeV/fm?. Thus we see that if we parametrized E;, by some surface tension
¢ its value would be surely higher than 10 MeV/fm?.

Let us proceed now with the last two terms in Eq. (8). The finite size effects in G,
come from nuclear interactions. As the quark bag is colour neutral E,, should be also
of nuclear type. Hence we expect the finite size effects in G, and E, ; to be not greater than in
usual nuclear matter. The latter correspond to the surface tension below 1 MeV/fm? [7].
Thus they are much smaller than E;, coming from the strange matter and we simply
neglect them in the following. We take E,, = 0 and

Gu(N, p) = uN. an
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Eq. (8) becomes
G(Ns A9 P) = Gbag(A’ p)+/ln(p) (N'"A) (18)

Now we are ready to look at the strange matter bubble formation. We compare the
system containing a bubble with baryon number 4 with the one containing no bubbles.
The Gibbs energy difference reads

= Gbag(As P)—”n(P)A (19)

AG(A, p) equals to the minimal work system has to perform in order to produce a bubble
of size A. If AG is negative then the system with the bubble is favoured over the one without
it. We define the critical bubble size, 4, as the value of 4 above which AG is negative.
This definition is rather conservative as, usually, by the critical size one denotes the size
of the smallest bubble which has higher probability to grow then to disappear. In other
words we expect the actual critical size to be smaller than A,;,. On the other hand we are
aware of the simplicity of the model we use and do not want to rely on the detailed structure
of the bumps in the A-dependence of AG.

Fig. 4 shows the results of numerical calculation of AG for m = 150 MeV,
B = 66 MeV/fm>. We plot there AG versus A for external pressure p = 0, 1, 2, 5, 15, 30,
"50, 100 MeV/fm3. For p = Othe critical bubble has 4, = 60 and the strangeness —§ = 24.
Such a fluctuation requires 24-th order weak transition and is therefore very unlikely
to appear. For relatively low pressures (up to 15 MeV/fm®) AG decreases rapidly with
p which resuits in much easier bubbie formation than for p = 0. For pressures above
about 20 MeV/fm® AG grows again. This behaviour is analogous to the bulk case (see
Fig. 1), and can possibly indicate that the Friedman-Pandharipande neutron matter is too
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Fig. 4. Gibbs energy difference, AG, of the strange and neutron matter for the set (6A) of B and m. The
numbers over the curves denote pressure in MeV/fm®
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Fig. 5. Critical size Acry for all three sets (6) of B and m. The strangeness of smallest critical bubbles is
given at the curves
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Fig. 6. Additional surface energy effect on AG for the set (6A) of B and m. The numbers over the curves
denote surface tension in MeV/fm?

soft at high pressure. The bumpy structure of AG suggests that the bubble formation goes
through.a sequence’ of metastable states. These states correspond to the closed shells of
bag orbitals.

In Fig. 5 we show A_,;, as the function of p for three sets (6) of B and m. In all three
cases the smallest critical bubbles are obtained at some finite and relatively low pressure.
The strangeness of these bubbles is given at the curves. For B = 66 MeV/fm® (sets (6A)
and (6B)) it is — S = 6 which makes the bubble formation much more likely than without
external pressure.
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Finally, we test-how much our results could be changed by taking into account the
surface effects of neutron matter. To this end we add oS to the right hand side of Eq. (19).
The curves in Fig. 6 show AG for B and m of set (6A), p = 15 MeV/fm® and ¢ = 0 and
1 MeV/fm?. We see that the effect is practically negligible and the critical size remains
the same.

4. Summary and conclusions

We have investigated the strange matter bubble formation inside the neutron matter
under finite pressure. The strange matter equation of state depends on the values of the
bag constant B and the strange quark mass m. All three sets of B and m used in our calcula-
tion give strange matter stable in the bulk limit at external pressure p = 0.

Using Friedman-Pandharipande [5] equation of state of neutron matter we have
found that the bubbles are most easily produced at pressures in the range of
15+ 30 MeV/fm?®. The central pressure of a typical neutron star is much higher. For exam-
ple, a 1.4 M neutron star has the central pressure of 150 MeV/fm® and the radius of
about 10 km. The pressure drops below 30 MeV/fm? at distances above 7 km from the cen-
ter. Thus we see that the phase transition should start in quite distant layers rather than
close to the center of the neutron star.

The actual kinetics of the phase transition requires much more detailed analysis of
fluctuations which could produce a bubble of, say, 4 = 14 and —S = 6. We expect that
it should go by formation of metastable bubbles corresponding to the minima of AG (see
Fig. 4) and quite possibly by two- or three-body collisions of these states with each other
or strange baryons (Z-, A%, ...) present in the neutron matter.

I wish to acknowledge the kind hospitality of the Max-Planck-Institut fiir Physik
und Astrophysik in Munich where this work was begun. I am also grateful to Professor
L. Stodolsky for helpful discussions.
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