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Constraints on physics beyond the standard model require a preliminary understanding
of the interplay between the electroweak and strong interactions. Strong interaction effects
are in principle non-negligible below the confining scale. A complementary approach, based
on the meson-quark duality and applied on the =+— =° electromagnetic mass difference and
the weak K-decays, confirms this expectation. Using this simple non-perturbative framework,
we conclude that the Ky — Ks mass difference, the empirical AI = .ZL rule and the recently
measured ¢’/ are consistent with the standard model.

PACS numbers: 12.10.Dm

Introduction

The standard model for strong and electroweak interactions [1} of quarks and leptons
is based on the SU(3)c x SU(2), x U(1) gauge symmetries. The mediators of strong interac-
tions, i.e. the gluons, as well as the quark matter fields are however not directly observable.
Moreover, among the mediators of electroweak interactions, only the photon gives rise
to long-range effects. These features, a priori unexpected for a so-called standard model,
are explained by means of two crucial assumptions. On one hand, the asymptotically-free
SU(3) gauge theory is confining at large distance such that only color-singlet hadron states
appear in nature. On the other hand, the weak gauge sector is spontaneously broken via
ad hoc self-interactions of fundamental scalar fields. But fundamental scalars immediately
trigger the question of naturalness [2]. Why is the Fermi electroweak scale (Ag ~ 10? GeV)
so small compared to the Planck scale (4p ~ 10'® GeV) at which new (gravitational)
interactions become non-negligibie ? This question has been at the source of many interesting
attempts to go beyond the standard model [3]. New symmetries (supersymmetry, ...)
or new confining forces (technicolor, hypercolor) around the Fermi scale could cure this
apparent sickness. Departures from the standard model, if any, should then show up
around one TeV. '
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The other typical scale of the standard model is the strong interaction confining scale
(Agep ~ 1 GeV). Below this scale, perturbation in terms of quarks and gluons stops
being reliable and a formalism in terms of hadrons becomes obviously more appropriate.

It is well known that the physics of light bound-states and, in particular, of kaons
has already been at the source of many important discoveries: parity violation, GIM
mechanism (and the charm quark), CP-violation (and the top quark)... New high-precision
measurements on light meson weak decays provide us with an indirect, but rather cheap,
way to probe physics beyond the standard model, if any. However, the more you try to
know about physics above one TeV, the more you have then to understand physics below
one GeV. A typical example is the tiny K; — Kg mass difference. A better theoretical know-
ledge of the long distance, non-perturbative strong interaction contributions would allow
us to put more stringent limits on possible 45 = 2 flavor changing neutral currents.

The purpose of these lectures is to present a new framework to treat effects of strong
interactions on weak meson decays. In the first lecture (Section 1), we introduce the concept
of chiral symmetry breaking which turns out to be the basic ingredient to build an appro-
priate strong interaction theory below the confining scale. A modified QCD theory and
a linear ¢ model can effectively describe the breaking in terms of quark and meson fields,
respectively.

In the second lecture (Sections 2, 3), we present the non-linear ¢-model, a meson
theory truncated to the pseudoscalars, which provides the Lagrangian for strong interac-
tions at low momenta. This formalism allows not only a simple derivation of the “old”
current algebra theorems but also an estimate of the size of chiral corrections. We then
emphasize the role of the (axial)-vector mesons in the matching of the perturbative theory
for strong interactions at low-momenta, i.e. the truncated non-linear ¢-model, with the
perturbative theory for strong interactions at high-momenta, i.e. QCD. A detailed illustra-
tion based on the nt—=n° electromagnetic mass difference supports this complementary
picture.

Finally, in the last lecture (Sections 4, 5, 6, 7), we adopt the same complementary
picture for strong interactions to estimate the weak hadronic matrix elements associated
with K; — K mass difference, the 41 = } rule and with the CP-violating parameters £ and
¢'. These are measured quantities which are rather sensitive to new physics beyond the
standard electroweak model.

The aim of these lectures is certainly not to review the non perturbative methods

1
available [4], but to plead in favour of the v expansion approach [5] which provides

a very simple link between the quark-gluon and meson theories for strong interactions.
This approach is well-known as a qualitative way to describe strong interactions of light

1
mesons [6]. As we will see, simple applications indicate that the v expansion can be

promoted at the rank of a quantitative tool for the study of the interplay of strong and
electroweak interactions [7].



259

1. Strong interactions and chiral symmetry breaking
The SU(N) gauge-invariant QCD Lagrangian for quark degrees of freedom reads
Loon() = qm)(i#)ql.(l)“[ﬁmaq;-l-h.c-]. 1.1

1Fys

with gy E( )q, the left (right)-handed projections of the quark field ¢ and

a,b = 1...n, the flavor indices. In Eq. (1.1) the summation over color indices is under-
stood. In the limit where the quark (current) mass matrix m goes to zero, the QCD Lagran-
gian is also invariant under the global chiral G; = U{n), x U(n)y:

dLr = SLrALR; ELr € U(M)Lg. 1.2)

However, we know that the nucleon bound states, which transform nontrivially under
G;, are massive. Consequently, the chiral symmetry G; must be broken below the one
GeV confining scale. As we will see, this phenomenological input turns out to determine
uniquely the low-momentum behaviour of strong interaction corrections to electroweak
processes.

a) The Nambu and Jona-Lasinio model

A very interesting way to implement this chiral symmetry breaking is to add a non-
-renormalizable, but Gi-invariant, four-quark interaction [8].

G =a =b _a
0Fn = N (@iaR) (rdt (1.3)
to the QCD Lagrangian given in (1.1). The fermion bilinears are color singlets. The self-
-consistent (Dyson) equation to generate a dynamical *“‘constituent” mass m (see Fig. 1)

q2
A

____p—*——»—:

Fig. 1. The gap equation in the Nambu and Jona-Lasinio model. The cross denotes a dynamical quark
mass and the dot stands for the four-quark coupling defined in Eq. (1.3)

gives the following relation:

i i, 1
m, = 2G a2 fm dg+0 (ﬁ) 1.4

if one neglects the quark current masses. The factor two in Eq. (1.4) arises from the two
possible contractions of the quark fields in Eq. (1.3). For reasons which will become mani-
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fest later, we neglect the color-suppressed contribution. Eq. (1.4) is trivially satisfied if
m, = 0. However, if the effective coupling G is large enough, namely
8n?

G> Gcri!ical = ]4—2—. »

(1.5)
Eq. (1.4) also allows the non-perturbative solution

iz M? 8n?

M2 ( mZ ) 1 G M2 (1 '6)

The Euclidean ultraviolet cut-off introduced in Eq. (1.4) is expected to be around the
confining scale. We assume M = 1 GeV to plot the graph of Eq. (1.6) in Fig. 2. The equation

| 7 (Gev)

0.4

I
f
I
!
|
!
!
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1

0.5 1 15 G/G,

Fig. 2. The dynamical quark mass as a function of the effective coupling G defined in Eq. (1.3)

of motion derived from the Lagrangian given in (1.1) and (1.3) implies a relation between
the “constituent” mass m and the quark-antiquark condensate:

G ;
m = — = <0i34I0} 1.7

if one neglects again the quark “current” masses. The g condensate plays therefore
the role of an order parameter. If {gg)» = 0, the chiral symmetry G; remains unbroken
and massless nucleons appear in parity doublets. On the other hand, if {qq) # 0, G; is

Myucleon

broken and the nucleons are massive. For m = 300 MeV =~

Fig. 2)

,-wWe obtain (see

{dg> ~ —(0.26 GeV)? (1.8)

in fair agreement with QCD sum rules [9].

The analogy with the theory of superconductivity [10] is quite striking and it is therefore
natural to investigate the possibility of deriving a Ginzburg-Landau type of effective Lagran-
gian for the (gq) order parameter. At low temperature, the attractive interaction mediated
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Fig. 3. Single gluon exchange interaction between colored fermions transforming like the irreducible repre-
sentation R; of SU(N),

by phonon exchange between two electrons with opposite spin and momenta leads to the
formation of “Cooper pairs”. Similarly, at low-momentum, the strong coupling o, becomes
in principle large enough to produce bound states of colored fermions (see Fig. 3). In the
one-gluon approximation, the effective static potential reads [11]

V = 4T ROT.(R;)
= 2 {CoR > R, ® R)=C,(R)-Ca(Ry)} 1)

where R, and R are the SU(N), representations of the colored fermion i and of the bound
state, respectively. The quadratic Casimir C,(R) for the lowest representations of SU(N),
are given in Table I

TABLE I
dim (R) &104)
1 0
2.
N N?-1
N
N(N+1) 2(N=-1) (N+2)
2 N
NWN-1 2N+1) (N-2)
2 N
Ni-1 2N

It is then straightforward to realize that only the color-singlet channel of the gq interaction
and the antisymmetric channel of the gg interaction are attractive:

Ni-1
V=—( N )a. for (g9,

V= (N; 1) #, for (g@as (1.10)
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However, the single-gluon approximation used here is far from being convincing since
o, at one GeV is of order one. A non-perturbative treatment is necessary.

1
The ~ expansion approach [5] in SU(N)qcp turns out to be rather suitable for

problems involving bound states. Furthermore, this approach provides us with a simple
diagrammatic link between the usual quark-gluon and the meson pictures for strong
interactions.

1
b) The diagrammatic rules OfW expansion

1
The Feynman diagram approach to ¥ expansion is based on two extremely simple

rules [5, 6]. First, a quark field ¢’ carries the color index 7 with i = 1 ... N. Consequently,
any quark-loop is proportional to the number of colors N (see Fig. 4a). On the other

(a)
~ g N
{b)

. . . 1
Fig. 4. The diagrammatic rules of "N expansion. The full line is a quark, the curly line denotes a gluon

hand, a gluon field Gf, ; carries two color indices and can be symbolically represented by
a q'E,- quark pair. From the behaviour of the vacuum polarization diagram in the large-N
limit (see Fig. 4b), we can immediately infer that

1

~ " 1.11
4~ (11D

in order to maintain SU(N), — QCD nontrivial.
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Q0-0D-

(b)

{c)

1
Fig. 5. Selection rules of the ~ expansion

Fig. 6. The next-to-leading contribution to the isospin-singlet «-vector-meson

These rules imply then two selection rules which are left as an exercise (see Fig. 5):

1
(f) “internal quark-loop effects are suppressed by v » (Fig. 5b);

1
(ii) “non-planar diagrams are suppressed by e » (Fig. 5c¢).

It is well-known that the large-N approximation provides us with a good qualitative
picture of strong interactions at low g2, where the «, perturbative expansion is not valid
anymore. After all, the empirical Zweig rule for the light vector mesons can only be under-

1
stood in the framework of the ~ expansion. For example, isospin implies that the next-

-to-leading three-gluon exchange diagram (see Fig. 6) contributes to the w (783) but not
to the g (770) vector meson masses. The observed degeneracy in mass indicates that the -
large-N approximation makes indeed sense at a scale where perturbative QCD is no more
reliable.
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~

A=
{a)
{b)
Fig. 7. (a) Planar g¢ and (b) non-planar gg strong interactions
Let us therefore consider the large-N limit in Eq. (1.10). Using Eq. (1.11), we conclude
that in this limit, only the gq color singlet channel is attractive. Moreover, the non-perturba-

|
tive nature of the N expansion provides now a way to go beyond the single gluon approxi-

mation. The sum over the leading planar diagrams with an arbitrary number of gluons
(Fig. 7a) implies that only the gg color singlet channel remains attractive in the large-N
limit, the gq interaction being non-planar (Fig. 7b). Let us then introduce the local order
parameter

Yo = 41, (1.12)
which transforms (see Eq. (1.2)) like
X 8L8 (1.13)

under the chiral symmetry G, = U(n), x U(n)z. The most general G-invariant effective
potential for y is given by

LGy = NTr FOrx ) +[Tr GOx NP + ... 1.14)

where the dots stand for terms with more than two flavor traces. The first term in Eq. (1.14)
arises from the (infinite) sum over the leading planar quark “bubbles” (one flavor trace).
The second one is induced by bubbles with one internal quark loop (two flavor traces)

1
and is therefore N suppressed (see Fig. 5b). In the large-N approximation, only the single

flavor trace term of Eq. (1.14) survives and the vacuum expectation value of yx* is necessar-
ily proportional to the identity [12]. The chiral group G is either spontancously broken
into its diagonal vector subgroup U(n).,p or remains unbroken. For n > 3, the latter
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possibility is simply ruled out by the nice ’t Hooft anomaly matching conditions [2]. We
conclude that in a world with three light flavors (m, 4, < 1 GeV), we have the following
breaking pattern:

U3 xUB)g = UB)L+r
in the large-N approxima{ion [12].
1
We emphasize again the real power of the ~ expansion which provides a simple

diagrammatic link between the quark-glion and the meson pictures. We have seen that
the large-N limit is consistent with two important features of the strong interactions,
namely confinement and chiral symmetry breaking. Let us then consider the simplest
effective theory satisfying these properties.

¢) The linear o-model

In the large-N limit, the most general dimension-four chiral-invariant Lagrangian
for the y-scalar field reads

2\ 2
&Ly =5Tro oy —cTr (x{' —[4—) (1.15)

with ¢ > 0. The complex order parameter y can be expressed in terms of a nonet of scalars
o and a nonet of pseudoscalars n:

1
X = \—/E(a+in); o =0, =un=mnd (1.16)
where A, (¢ = 0, ... 8) are the usual three-by-three Gell-Mann matrices. The chiral sym-
metry breaking is triggered by the non-vanishing vacuum expectation of o. Assuming
{o3> = 0 (isospin approximation), we find two degenerate -minima:

1

O = 1 IR 1.17)
+1

The chimeral solution with a negative sign gives rise to four kaon-like scalar Goldstone
bosons (see Eq. (1.23)). Let us therefore consider the more realistic minimum:

. 3
{og) =0, <(op) = '\'/2—f (1.18)
The mass spectrum is then the following:
B¢
m, = |=<aey, my=0 (1.19)
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namely a degenerate nonet of massive scalars and nine pseudoscalar Goldstone bosons
associated with the spontaneous breaking of the flavor symmetry G;. Explicit breaking
terms are therefore required to reproduce the observed mass spectrum of the “light”
7, K, n and 1’ pseudoscalars [13]

2
"\ a
L breaking = Z;— Trm(x+xH)+ 5;—% [log det y—log det x*]>. (1.20)

The first term breaks the G; symmetry, while the second one breaks only its axial U(1)
subgroup and gives the i’ a larger mass (see Section 2). In Eq. (1.20), m denotes the diagonal
quark current mass matrix:

ny
m = my . (1.21)
mS

In the isospin limit we have m, = my # m, and the flavor SU(3) breaking is triggered by
the non-vanishing expectation value of the o3 component:
{og)
-3 20 (1.22)
Koo
The parameter 4 introduced in Eq. (1.22) should be small in order to treat the explicit
breaking terms given in Eq. (1.20) as a perturbation. The scalar mass spectrum is also
modified by the first term in Eq. (1.20) and we obtain

.|

i

(4-2)
2 o202 (2
mo‘n mn+3 (ml( )A(2A+\/2)
442 /2
iy = mi+d (m—m )( AJ),
4+14 /2 A+114°
mﬁ =m+ (mx )(+4\/ * ),
" 4(24+./2)
mi. =m. (1.23)

The last relation in Eq. (1.23) indicates an ideal mixing in the o,—0, system:

1
= ﬁ(m?-da), oy = \/_ (ui+dd), o,= —s§ (1.24)
just like in the @— ¢ vector system (m, = m,). An estimate of the A-parameter defined
in Eq. (1.22) would enable us to predict the full scalar mass spectrum.

Let us consider for that purpose the coupling to a left-handed gauge current. In the
QCD Lagrangian given in Eq. (1.1), we have to replace the usual derivative by
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& covariant one
D, = 0,~igW, (1.25)
and we obtain
£(quarks) 2 §,(iP)ay — FLFY, (1.26)

with FL, = 8,W,—8,W,— ig[W,, W,], the field strength tensor. The Lagrangian in (1.26)
is invariant under the local transformations

qr = gL(x)qys

i
W, - 2 gu(x)2,8¢ () + gL(X)W, g1 () (1.27)
and contains the interaction
Z(quark) > ggty, W, g1 (1.28)

On the other hand, the same procedure applied to the linear o-model defined in Eq. (1.15)
gives

F(meson) 3 i % Tr (@, — 20,0 W™ (1.29)

The identification of Eqs. (1.28) and (1.29) implies therefore the following expression
for the left-handed currents

ai —-aq i 3 a
JP = giy,g; = ?(6Mxx+—x6#x+)" 5 —% (0,no+00,m)". (1.30)

In the SU(3)-limit (see Eq. (1.18)), we can estimate the m-to-vacuum hadronic matrix
element

OUFin*> = = foa (130

measured in the n+ — ptv weak decay (see Fig. 8). Consequently, the vacuum expectation
of the g-field can be related to the pion decay constant:

f=f, ~ 132 MeV. (1.32)
U
Wi
n* ~ VN
d

Fig. 8. A planar diagram associated with the = decay constant f;. The cross denotes the projection on the
color-singlet meson bound-state
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In the same way, the SU(3)-breaking given in Eq. (1.22) implies a splitting among
the pseudoscalar decay constants:

1+ 4
f_" = _2..‘/_2 . (1.33)
o4
NG
Notice that 4 = —2\/5, i.e. fyx = 0, corresponds to the non-realistic chimeral solution

given in Eq. (1.17).

The SU(3) breaking parameter 4 is a function of measured pseudoscalar decay con-
stants. The ratio given in Eq. (1.33)) can indeed be extracted from the K* and n* leptonic
decays:

i“. {m,F(K*' - u*v) }”2

Sx mgl(n* - p*v)
1 (.'"_) y
mt ud ud
x{—"=/ 4 ~ 0.275 4 1.34
1 mp 2 Vll.l Vus ( )
mg

The Kobayashi-Maskawa mixing matrix elements V;; appearing in (1.34)
V0975, V,~022 (1.35)

are estimated from nuclear f-decays and K — nev, respectively [14]. We obtain then the
ratio [15]

fe _ 1.2240.01 (1.36)

S
namely (see Eq. (1.33)) a small SU(3) breaking effect

4018 <1 (1.37)

as it should be. Combining the results obtained in Eqs. (1.23), (1.33) and (1.36), we can
now plot the scalar mass spectrum as a function of fi/f, (see Fig. 9). We have also indicated
the scalar resonances reported in the Review of Particle Properties, April 1988. An ideal
mixing picture for the scalars clearly favors the assignements o, = a,(980), g, = f65(975)
and o, = f,(1590) but excludes the f,(1400) resonance from the lowest-lying scalar nonet.
However, the large f,(975) - KK measured branching ratio remains puzzling. We also
notice that a scalar-glueball mixing invoked sometimes to explain the scalar mass spectrum,

1
is color-suppressed in the framework of the v expansion.
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1 11 12 13 1k f /1,

Fig. 9. The scalar mass spectrum obtained in the linear o-model (1.15), as a function of the ratio fi
N "

The vertical dashed-line stands for the experimental value of this ratio (see Eq. (1.36)). The dots represent
a possible assignment of observed scalar resonances

The decay widths of the scalars can also be estimated in the linear s-model. For that
purpose, it is useful to make the following change of variables (polar theorem):

1= &n)—= \/- ¥m);  &r) = exp (\—/%) (1.38)

to rotate away the pseudoscalar = fields in the potential of the linear 6-model (see Eq. (1.15)).
The linear transformation of y under G; (see Eq. (1.13)) implies

&— géh™ = hégy, o - hoh, (1.39)

with A, a complicated non-linear function of g, x and n. However, taking /2 = g;, = g,
we notice that the  and ¢ nonets still transform linearly under the flavor U(3)y symmetry,
as it should be. '

In the SU(3) limit (see Eq. (1.18)), the change of variable (1.38) in the kinetic term
of the linear ¢ model induces the following simple scalar-pseudoscalar interactions:

_Tra Uo,U*(&5EY); & = a—<{o), (1.40)

U =& = exp (i ‘? ") : (1.41)

242

with
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Taking into account the n—n’ mixing (see below), we derive from Eq. (1.40) the decay
width

I'(ag = nw) =~ 400 MeV (1.42)

which is a factor eight larger than the present experimental value. Further theoretical as
well as experimental investigations are needed to settle this puzzle.

In conclusion, the renormalizable linear g-model provides a nice effective description
of the chiral symmetry breaking in terms of mesons. However, the predicted scalar mass
spectrum around one GeV (see Fig. 9) and large decay rates are not in full agreement
with the present data. It is therefore preferable to restrict ourselves to an effective theory
valid below one GeV, such that the scalars essentially decouple.

2. The non-linear o-model and the quark mass ratios

The non-linear o-model truncated to the pseudoscalars is simply derived from the
linear Lagrangian of Eq. (1.15) by freezing the scalar degrees of freedom. Using the change

S

of variables given in Eq. (1.38) and replacing ¢ by its vacuum expectation value, (o) = \-/—2 1,

we obtain
2

L = fS— {Tr 5, U8, U +r Trm(U+U™)

+ ‘% [Tr(In U~In UM]?}, 2.1

with m, the diagonal quark mass matrix defined in (1.21) and U(n) given in Eq. (1.41).
A straightforward identification of the mass terms in Eqgs. (2.1) and (1.1) gives

a e
JraL = — ry U* (2.2)

such that the parameter r is related to the gq condensate estimated in Eq. (1.8):

4¢ad
re - <jj’2‘1> ~ 4 GeV, 2.3)
We notice that the relation
43> 2
o~ 2-4
1 GeV Y @4

1
is consistent with the N expansion. The N-dependence of the pseudoscalar decay constant

is indeed given by
f~N-N"'" =N (2.5)
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the factor N due to the quark loop in Fig. 8 being partially compensated by the usual
normalization factor N~/ associated with a color-singlet meson-state.

The Lagrangian of Eq. (2.1) provides a very elegant way to incorporate the constraints
of current algebra for the light pseudoscalars 7, [16]. For illustration, let us consider
the pseudoscalar mass spectrum. Expanding the exponential U up to the second order,
we find:

2 r
Mgo = 'E (ms+md)’

r
Mg+ = '5 (ms+mu)’

r
My = E (mu+md):

, 2
r
mbp = 2 (my+my)—%=—-——, (2.6)
m

o
where the second term in the n° squared mass arises from the isospin-breaking n°—mn
mixing.

The isospin-breaking effects induced by electromagnetism must be under control

to estimate the quark (current) mass ratios from Eq. (2.6). In the non-linear s-model,

the couplings to electromagnetism are simply introduced in the Lagrangian (2.1) by means
of the covariant derivative

DU = d,U—ieB;™[Q, U], @7

with Q = diag (3, —1, —2), the quark electric charge matrix. The commutator appearing
in Eq. (2.7) is due to the fact that the photon couples equally to left and right-handed
quark fields. The derivation of the current algebra theorems for electromagnetic interactions
becomes then straightforward. For example, the Sutherland theorem [17] on the vanishing
of the leading electromagnetic contribution to the isospin-violating 1 — wnm process is left

as an exercise. In the same way, it is easy to reproduce the Dashen theorem [18] for the
pseudoscalar mass splittings:

(mg+ —mZo)oep = (M2+ —mi)qep (2.8)

This result allows a safe estimate of the isospin breaking in the quark masses:
r 2 2 2 2
> (mg—m) ~ mgo—mg+ —(Mpo—my+)

=~ 0.0053 GeV?, (2.9)
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and consequently, a determination of the quark current mass ratios [19]

- - (2.10)
In the isospin limit, the ng—mn, squared mass matrix reads
2 2
e 292 ()
.11
2
292 () %<2mz+mi)+a

and contains the SU(3) Gell-Mann-Okubo relation

mis = L (dmi —m3). (2.12)

The physical n and 7’ eigenstates are obtained after diagonalization of the two-by-two
matrix in Eq. (2.11):

n=1ngcosf—nysinf, n = ngsin@+nycosh, (2.13)
with
2m2,
1920 = — 280
moo—mss
_ 3a -1

=2,/2¢1- —5— . 2.14
V- o) 219

Fora = 0, we obtain the ideal mixing 6 ~ 35° and consequently the mass relation m,, = m,
at the source of the so-called U(1), problem [20]. Using the trace condition ¢ = m§,+m,’:
—2mZ, one finds that the observed mass of the 1’ pseudoscalar requires [13] in fact a rather
large value for «

o~ 0.72 GeV3, (2.15)
From Eq. (2.14) we then conclude that
g~ —19° (2.16)

in good agreement with the experimental data [21].
However, the popular way to extract this -7’ mixing is based on the 8-8 matrix
clement
2

2 1/2

Mgg—M

tgf, = — {Tngf:;g@;} . (217
z

In this way, the resulting value
0, ~ —10° (2.18)
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is obviously very sensitive to any departure from the Gell-Mann-Okubo (GMO) relation
originally derived in the octet approximation (mgs = m,). We conclude that sizeable
chiral corrections are needed to get a consistent derivation of the n—n’ mixing 0.

In fact the study of the pseudoscalar decay constants leads to a similar conclusion.
Introducing the covariant derivative

DU = 3,U—igW,U (2.19)

in the Lagrangian (2.1) of the non-linear o-model, we obtain indeed the SU(3)-invariant
weak currents
b _ i ta
e = ?(aﬂvu*) (2.20)
such that fx = f,.
Let us therefore consider the following SU(3)-breaking redefinition of the pseudoscalar
fields.
U- U = U+d[m(x)-Um*(x)U] (2.21)

which preserves the unitarity of U up to second order in the quark mass matrix m. This
transformation applied on the leading Lagrangian (2.1) gives

d 2
8 = — —'g—Tr {2m*U3,U*0,U+2md*U* +rmU mU* —rmm™ +h.c}. (222)

Consequently, for a specific choice of the parameter d, the next-to-leading (in chiral pertur-
bation), SU(3) non-invariant, effective Lagrangian can be parametized in terms of three
independent operators only

re 5 4r’ .,
PV = N — Tr{— A—oma Uu*+ i mU*mU* - —z mm +h.c. (2.23)
such that tedious wave-function renormalizations are avoided.

The first effective operator induces the needed SU(3)-breaking corrections to the weak
currents:

2
SJP = —1’%— yr (mo,U* —a,Um)™ 2.29)
such that
K (mlzc—mi 1
2 =142 "a0({=). 2.25
T SR VT 223

It is worth comparing this relation with the expression derived in the framework of the
linear o-model (see first Section). Expanding indeed Eq. (1.33) to the first-order in the SU(3)-
-breaking parameter 4 and inserting the first mass relation of Eq. (1.23), we obtain

S mg —m
_“__1+2———\/2A-—1 m;‘—_m—z . (2.26)

Ix
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Fig. 10. The quark current-mass ratios my/mg Vs ms/mg by restricting the second-order chiral corrections

to the squared pseudoscalar masses to be less than 25 9%;,. The dashed curve is taken from Ref. [22]. The full

curve represents the large-N approximation with |41) > 1 GeV. The heavy dot stands for the first-order
determination (|4| = 00). The cross denotes the second-order estimate (A = 1 GeV)

The chiral symmetry-breaking scale A,, introduced as a correction to the non-linear
og-model, is essentially the scalar mass derived in the linear g-model.

Ay =2 m, =~1GeV. 2.27

The second effective operator in Eq. (2.23) provides the chiral corrections to the pseudo-
scalar masses. In the isospin limit, we find

My x
Mg .= m§, (1+ . ) (2.28)

such that corrections of about 259 are also expected for A2 >~ 11 GeV2, Keeping isospin-
-breaking terms and taking into account the leading electromagnetic corrections for the
charged pseudoscalars, we obtain the relations:

u
Mi.~M2, ~ u{l—y-i— P(1+2x)},

2
M2,

1R

u

M2 ~ u{x+y}, (2.29)

with 2u = rm,, x = m,/m, and y = my/m,. Eq. (2.29) contains four parameters (u, x, y.
and A) for fitting three combinations of pseudoscalar masses. We obtain then Fig. 10
which displays the current-mass ratios m,/my vs mJmy as a function of the chiral symmetry-
-breaking scale A. A comparison with the curve displayed in Ref. [22], where next-to-
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1
-leading (in the v expansion) loop-effects are included, indicates that the large-N limit

provides -a good and useful approximation to describe the pseudoscalar mass spectrum.
In particular, a massless up quark appears for 4> ~ —1 GeV2. Such a surprising possibility
would automatically solve the so-called strong CP problem without the need of an elusive
axion.

However, our simpler approach allows a determination of the sign as well as the
magnitude of A2 from the study of the n—n’ mixing [23]. The second-order GMO relation
reads

M2 — %{xmﬁf—M:aﬁuzM;ﬁM;

1
+ P(M§+—M,2,++M,2@—Mﬁo)2}. (2.30)

The negative n—n’ mixing angle requires M3g > M2 and consequently a positive A>
around its expected magnitude. Fig. 11 displays the large chiral correction to the 8, angle
due to its dependence on the small quantity M §8—M§. Contrary to 6,, the 8, angle gets
the typical 25% correction observed in the isosinglet pseudoscalar squared masses. For
A = 1 GeV, we obtain now a rather consistent estimate for the 1 — 1’ mixing in the large-N
limit, namely (see Fig. 11)

0,, = —(22+2)° (2.31)

in a good agreement with experimental data.

b A (Gev)
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Fig. 11. The n—v’ mixing angle as a function of the chiral symmetry-breaking scale A. The dashed (full)
curves display the second-order corrections to 8, ~ —19° and 8, ~ —10° respectively
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Knowing the sign and the magnitude of A2, we are now able to estimate the light
quark mass ratios. From Fig. 10, we can exclude the possibility of a massless up quark
and conclude that second-order corrections to the Weinberg mass ratios given in Eq.
(2.10) are relatively small. For 4 = 1 GeV, we find indeed [23]

mu ms
— =~ 0.66, ~ 17.7. (2.32)
my . my

Absolute predictions on the size of the light quark masses ‘re'quire technics beyond
chiral perturbation. Non-perturbative methods based on QCD sum rules provide [24]

1 . .
estimates for these masses. The e expansion applied to the m+—n° mass difference gives

also a prediction for the light quark masses for the following reason.
The Egs. (2.6) and (2.9) imply that the nt—n° mass difference due to the isospin
violation in the up-down quark mass

(My+ —My0)ocp = 0(—0.1 MeV) (2.33)
is negligible compared to the measured one
Mg+ —m )™ =~ 4.6 MeV. (2.34)

Electromagnetism must therefore be the main source of the =t —=° mass splitting, and the
virtual photon can be used as a probe to study hadronic physics. In particular, an estimate
of the gg condensate, and consequently of the parameter r (see Eq. (2.3)), is possible.

3. The nt—n° electromagnetic mass difference

Let us first estimate this mass-splitting in the framework of the effective meson theory
truncated to the pseudoscalars and defined by Egs. (2.1) and (2.7). At the order aggp, the
electromagnetic corrections to the n* mass is simply given by the diagrams of Fig. 12.

3

n n n n n

(a) (b}

Fig. 12. The Feynman diagrams contributing to the long-distance part of the =+—=n° electromagnetic mass
difference in the low-energy truncation with only pseudoscalar mesons

Working with the £-gauge, the propagator of the photon reads

(_l) (guv—é _q';z_q_v)/qz' (3'1)
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A straightforward calculation gives then the following gauge-mdependent result in the
chiral limit (m? — 0):
M

- 3
Ami(0™*) = 27, #QED J dq’, (3.2)

0

with g2, the photon-momentum running in the loop and M, the Euclidean ultraviolet
cut-off associated with the truncation of the meson theory. We notice that for & = 1(4),
only the first (second) diagram of Fig. 12 contributes to the n+—n® mass difference.
The experimental mass splitting could be reproduced for the reasonable cut-off scale
M ~ 0.85 GeV. However, physics has no reason to stop at this particular scale. In fact,

(a) (b

Fig. 13. The Feynman diagrams contributing to the short-distance part of the w+—=° electromagnetic
mass difference in perturbative QCD

the contributions arising from large-g2? loop-momenta can be estimated in the framework
of perturbative QCD.

At small distance, say ¢® > 1 GeV?, the order aocp contributions to the w+—n°
electromagnetic mass difference are simply given by the diagrams of Fig. 13. In the large-N
limit (see Appendix A), we find

_ . dqz
A m? (pert. QCD) = 3§ %qepS 2(“an"2) J —qT > 3.3

with M acting now as an infrared cut-off associated with the truncation of the QCD theory.
The running QCD coupling is given by
6n v
aQCD(ﬂ) = s (3.4)

(11N —2n) log -2
AQCD

with u, the normalization scale at which r, or equivalently the light quark masses (sce
Eq. (2.6)):

m2, ;

mp) = 3 (my+my () = ) (3.5)

is estimated. In these lectures, Aqcp is defined for three flavors (n = 3).
Our phenomenological intuition tells us that strong interactions can, in principle,
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be described either in terms of mesons or in terms of the quark and gluon degrees of freedom.
Let us therefore assume that the meson theory truncated to the pseudoscalars and perturba-
tive QCD vprovide complementary pictures for strong interactions below and above
M ~ 1 GeV, respectively. In that case, we can simply add the expressions given in Eqgs. (3.2)
and (3.3) to obtain the n+—=n°® mass splitting since the g2 loop-momentum carried by the
virtual mesons in Fig. 12 is identical to the ¢* loop-momentum of the gluon in Fig, 13:

2 2 _ a2
Qmeson = qquark-gluon = qphoton' (36)

Defining the cut-off M to be the scale at which the integrands in Egs. (3.2) and (3.3) are
equal, we obtain [25] the reasonable values M = 0.7(0.6) GeV for m(l GeV)
= 4.6(6.9) MeV, respectively. ‘

Fifty percent of the total contribution to the nt—n° mass splitting Am arises from
“physics below one GeV”. We find Am = 6.4(4.3) MeV if Agep = 0.3 GeV and Am
= 5.5(3.7) MeV if Agcp = 0.2 GeV. These values for Am are in fair agreement with the
“observed” mass difference [26]

A m*™ = (4.43+0.03) MeV (3.7

obtained after substraction of the small effects due to the (my—m,) quark mass difference
(see for example Eq. (2.6)).

The severe truncation of the meson theory to the pseudoscalars represents a good first
step. However, a comparison between Egs. (3.2) and (3.3) indicates a rather strong de-

‘ ' .. . 1

pendence on M2. In other words, the transition from perturbative QCD (~ —4) to the
q

meson theory truncated to the pseudoscalars (~1) is too sharp. Is our phenomenological
... : : 1

intuition wrong? Once again, the answer can be found in the framework of the ~ expan-

sion [6].

Let us indeed consider the two-point function of a current J (see Fig. 14). Using the
diagrammatic rules introduced in the first Section, we observe that in the large-N limit,
any cut gives only rise to a single intermediate meson state if we assume confinement.
A close look at the color index flow in Fig. 14 excludes for example the possibility of
a (4,4") (GJG') meson-glueball intermediate state. The two-point function can therefore

<;=?i

Fig. 14. A typic al contribution to the two-point function in the large-N limit. A cut reveals the intermediate
states
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be written as a sum over one-meson poles:

a2
J@QI(—9)) = Z pe Lo (3.8)

n

On the other hand, perturbative QCD tells us that
J@I(-a) =, logd” (39)

The equivalence (duality) between a meson theory for strong interactions and QCD is there-
fore possible only if the former contains an infinite number of states. A finite sum in Eq.
(3.8) could never reproduce exactly the logarithmic behaviour predicted by Asymptotic
Freedom, and a matching problem between perturbative QCD ~ log ¢2 and the truncated

1
meson theory (~ —2) would automatically appear. Similarly, our truncation of the meson
q

theory to estimate the nt—n° mass splitting is too severe to observe a precocious duality
between the two pictures for strong interactions. Heavier state exchange contributions must
be included in our calculation.

A chiral model including (axial)-vector mesons is rather easy to build. Let us consider
for that purpose the interesting “hidden gauge symmetry approach” of Bando et al. [27].
The basic idea of this approach is to introduce the (axial)-vector mesons as gauge bosons
of hidden local symmetry. In the chiral limit, the non-linear o-model

2
&L(n) =%‘- Tro,Us,U" (3.10)

is invariant under the global transformation

U - gUsg (3.11)
However, if we define
U = &0E0) = exp (‘ \;2 ") (3.12)
then
€ - g th*(x) = h(x)égx (3.13)

with A(x) € U(3),oc, is also symmetry of the Lagrangian. This local symmetry can be gauged

. . 2 .
by introducing a vector (1--) nonet V, = —2‘-’ V, transforming like

V, - — hd,h* +hV,h*. (3.14)
g
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The Lagrangian becomes then (in the “unitary” gauge)

f2
Fm, V) = - = Tr[BL7E-9,L8" Y
B -
a -—Tr [9,7E+9 8]
— 1Tt F,F* (3.15)
‘with the covariant derivative
2,60 = 6,.:5(”—igV,,é‘(+) (3.16)

and the non-Abelian field strength tensor
Fy, = 0,V,—0,V,—ig[V,, V,]. 3.17)

The first term in Eq. (3.15) is equivalent to the pseudoscalar Lagrangian given in Eq. (3.10).
The Lagrangian defined in (3.15) has several interesting features. In particular, the compari-
son between the SU(3)-invariant vector mass

my = /—;’- gf. ~ 0.77 GeV (3.18)

a
Evan = 7 g~ 6.1

indicates that the free-parameter a is close to 2. In fact, the weak left-handed current derived
from Eq. (3.15) contains the term

and the ¥Vnm coupling

JZ - (—;—)f,fg(&vuc*)"“ (3.19)

such that the decay constant of the @ vector-meson can be expressed in terms of the pseudo-
scalar one. We have indeed

Oi,le*> = (2 \/z)f,g :
= —% fymye, (3.20)
namely f, = \/af,. We reproduce the so-called KSRF relation [28]
fr =21, (3.21)

if
a=2. (3.22)
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It is also remarkable that vector dominance (no direct B,nd,n coupling) is implemented
for this particular value of the parameter a.

The inclusion of the axial-vector (1++) nonet is similar. To extend the local hidden
symmetry to U(3)x U(3), one defines [27]

U = & ui (3.23)
such that

$r— hL,R(x)fL,Rgl:x, Em = hu(xX)Emhy (x) (3.24)
leaves £ (m) invariant. Gauging this symmetry, one obtains a chiral-invariant Lagrangian
for the pseudoscalars, vectors and axial-vectors which contains two additional free-parame-

ters. These two parameters can be determined if the two Weinberg sum rules [29] (see
Appendix B) together with Eq. (3.21), namely

Sr = \/if: = \/ifm my= ﬁ my (3.25)

are imposed. The couplings to electromagnetism are again introduced by means of the
covariant derivative defined in Eq. (2.7). The one-loop (axial)-vector meson contributions

Sy - N
n A bit n A bid n A b1

Fig. 15. The pseudoscalar, vector and axial-vector meson next-to-leading contributions to the long-distance
part of the =*—=n° electromagnetic mass difference in the £ = 1 (Landau) gauge

to the m+—n° mass splitting (see (Fig. 15)) give then

Ml
3 mim?
Am3(0™*, 177, 1" ) = —q Jd 2 4 . 3.26
( Tt | N G @ (29

The same-result can be derived [25] in the framework of the “massive Yang-Mills” theory
[27] for mesons. If we send the cut-off M to infinity in Eq. (3.26) and assume the second
relation in Eq. (3.25), we recover the famous result [30] obtained using current algebra
3, m?
=¥ "2 1n 2 & 5.1 MeV. This rather successful extrapolation
T m,

from one GeV to infinity requires a huge cancellation [31] among heavier resonance contri-
butions and can only be justified if the large-g? corrections are estimated in the framework
of perturbative QCD, which is precisely the basic feature of the approach advocated in this
Section.

techniques, namely Am =
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1 L Lt 1 !

05 1 15 M(GeV)

Fig. 16, The =+—n° electromagnetic mass difference as a function of the cut-off M (scale where we match

the meson and quark-gluon pictures). (a) Dashed line: long-distance part calculated with pseudoscalar

mesons only and with Aqgcp = 0.3 GeV, (1 GeV) = 4.6 MeV; (b) Full line: long-distance part calculated

with pseudoscalar, vector and axialvector mesons and with Agcp = 0.3 GeV, (1 GeV) = 4.6 MeV;

(c) Dashed-dotted line: same as (b) but with Aqcp = 0.2 GeV and m(1 GeV) = 6.9 MeV. The experimental
~ value is represented by a black dot

In the small-g? limit (g2 < mj ), Eq. (3.26) simply reduces to the Eq. (3.2). On the
other hand, in the large-g2 limit (¢> > m? ), Eq. (3.26) reproduces the g2-dependence
derived from perturbative QCD (see Eq. (3.3)) and confirms our expectation. The inclusion
of the (axial)-vector exchange contributions improves indeed the matching between pertur-
bative QCD valid at large g% and the meson picture truncated to the pseudoscalar fields
valid at small ¢2. This implies a better stability of the total n+—=a° mass difference (obtained
by adding now Egs. (3.26) and (3.3)) with respect to cut-off variations around the one GeV
scale where both pictures for strong interactions should still be reasonable (see Fig. 16).
For m, = \/2my and m(1 GeV) = 4.6(6.9) MeV, we obtain [25] respectively

Am = 4434 MeV  if  Agep = 0.3 GeV,
Am = 403.0)MeV  if Aoy = 0.2 GeV (3.27)

to be compared with Am®™? = (4.431+0.03) MeV. We already notice that the solution
m(l GeV) = 4.6 MeV with Aqep = 0.3 GeV is prefered. This information turn out to be
important for the understanding of the A7 = % rule and the estimate of the CP-violating

1
parameter ¢'fe (see Sections 5, 6) in the framework of the v expansion.

Combining this result with the quark current-mass ratios derived in Section 2, we
conclude that

my(1 GeV) = 3.7MeV, my(1 GeV) = 5.5MeV, m 1l GeV) = 100 MeV, (3.28)
for Agcp = 0.3 GeV, to be compared with the standard values [24]
my(1 GeV) = (5.1£1.5) MeV,
my(1 GeV) = (8.9+2.6) MeV,
my(1 GeV) = (175+55) MeV. (3.29)



283

To summarize, the real infrared momentum behaviour is determined by the truncated
non-linear g-model which provides about 509 of the nt—n® mass difference. The vector
and axial meson exchanges just modify the g2-dependence around one GeV to match
rather successfully the ultraviolet behaviour controlled by perturbative QCD. A sign of the

1
duality advocated [5, 6] in the framework of v expansion is explicitly observed in the case

of the nt — 0 electromagnetic mass difference. The virtual photon has been used as a (cheap)
probe for strong interactions at small and long distances. In the next Sections, we extend
this approach to study weak hadronic matrix elements.

4. The AI = % rule

At the W-gauge boson mass scale, the AS = 1 weak processes are described by the
tree-level free-quark diagram given in Fig. 17. The associated effective Hamiltonian is then
simply given by

HY™! =2 /2 GV, J3ue

G
= 1/—; QM3 (4.1)

with G the Fermi constant. To estimate the hadronic matrix elements of this Hamiltonian,
we reexpress the left-handed quark current J)* = Qﬂyﬂq{ in terms of meson fields (see

Fig. 17. The AS = 1 weak interaction in the free-quark approximation

Eq. (2.20)). In the free-meson approximation, Q% (Mg) = Q% (0) with

r

00 = — 7 @UUY™euUy” 4.2

and the three K — nn decay amplitudes read

' X
AK »n*n) =X, AK°->7’1% =0, AK'->n*2 = 4.3)

7’
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with X = \—/—2- oSu(me—m2) ~ 5.5-10-2 GeV. On the other hand, the experimental
data
APK® > n*n7) ~ 5.0X,

A™(K® - 1°1°%) ~ 48X,
A(K* » n*n%) ~ 033X 4.4)

display a suppression of the pure AT = 3 amplitude K+ — n+n°® and an enhancement of the
AI = 5 component of the K° — nn amplitudes.

The free-quark and -meson approximations used to derive the theoretical predictions
(4.3) implies a factorization of the original Q, operator into two currents. These approxima-

1
tions are justified in the large-N limit. In the m expansion approach, the short-distance

1
gluon and long-distance meson exchanges between the two currents are indeed o, ~ v

1 1
and — ~ ~ suppressed, respectively. The solution to the so-called A7 = % rule puzzle

1
within the standard model should therefore arise from the next-to-leading strong interaction
corrections.

The following simple observation supports this possibility. Let us consider the one-loop
diagram of Fig. 18. This diagram indicates that a non-zero K® — n°r® decay amplitude

*

n ne

N n°
n

Fig. 18. The one-loop induced K°® — =°z® decay diagram. The black box stands for the weak AS =1
Hamiltonian while the black dot represents a strong vertex

is generated by the strong rescattering of the charged pions. In other words, strong interac-
tion corrections to the Q, operator induce a new effective current-current meson operator:
4

o) = - —;(a,‘UU’r)"’(a,‘UU Ty (4.5)

with (n’z°|Q{"|K’) = —<(n*n7 QiK"Y # 0.
A complete one-loop calculation (see Fig. 19), using the strong Lagrangian (2.1)
and the weak currents (2.20) gives the following “meson evolution” in the chiral limit [32]

4M?> 2M?
0F(M?) 1= 00~ @) 00~ —— @y {0, —02}™(0). (4.6)
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]
Fig. 19. The (a) leading and (b) next-to-leading contributions to the AS = 1 K — nr decay amplitudes

Again, 2 loop-momentum cut-off M is introduced since the meson theory is truncated
to the pseudoscalars. The K — nrn decay amplitudes become then:

2M?
AK® » ntn7) = {1+ }X,

()’
] 0_0y __ 6M2
A(K. >R = {0+ (_——41tf,‘)2} X,
f Lm0 = d1- 4_M2_}_X_
AK nTR’) = {1 @) 3 4.7

For M ~ 2znf, ~ 0.8 GeV, the pattern of the experimenta] decay amplitudes given in
Eq. (4.4) can easily be reproduced. In a meson theory truncated to the pseudoscalars,
we observe a suppression of the pure Al = § amplitude K+ — ntn® and an enhancement
of the AI = } component of the K® — nn amplitudes.

However, we know that physics does not stop around one GeV and we must include
also the next-to-leading corrections arising from larger loop-momenta. The full next-
-to-leading corrections are represented in Figs 20b, c. The factorizable ones simply renormal-
ize the currents appearing in the leading operator (Fig. 20a). There effects are taken into
account by including the measured form factors of the AS = 1 currents. These corrections
as well as the leading contribution were absent in the m*—=°® electromagnetic mass
difference, due to spin-parity.

All the next-to-leading nonfactorizable corrections are contained in Fig. 20c. For
small photon (W-gauge boson) momenta, the nt—n° mass difference (the K — nn decay
amplitudes) have been estimated by means of the truncated meson theory. These are precise-
~ ly the results presented in Egs. (3.2) and (4.7) respectively., For large photon (W-gauge
boson) momenta, perturbative QCD becomes reliable and the short-distance calculation
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{b) {c)

Fig. 20. The complete (a) leading, (b) next-to-leading factorizable and (¢) next-to-leading non-factorizable
contributions to a weak (electromagnetic) hadronic matrix element. The full line is a quark and the wavy
line, a W gauge boson (photon)

b C b 3
Fig. 21. Short-distance gluonic corrections to a current-current four-quark operator

for the weak decay amplitudes is similar to the one sketched in the Appendix A. Neglecting
for a while the so-called “penguin” contributions [33] (see Section 7), the next-to-leading
nonfactorizable corrections to a free four-quark current-current operator defined at the
W mass scale arise from the gluon exchange from one current to the other one (see Fig. 21)
and give [34]

3a, M2 .
JPIHME) = JPIHM?)~ 47: In < M“j) JTE(M?). (4.8)

In particular, we have the following ‘“‘quark-gluon evolution”

2
0P = 0P~ T2 1n (%‘1) 0{°(M?)+ “penguin”. (49)
Combining Egs. (4.6) and (4.9) with Q(M) = Q%P(M), we get a full next-to-leading
0, operator evolution from My, to Zero momentum. We notice that the negative “quark-
-gluon evolution” of Q, into Q, from My, to M is consistently extended to lower mo-
menta by a further negative ‘““meson evolution”. This remarkable result should be contrasted
with the popular vacuum insertion approximation (V.IL.A).
The V.I.A consists in inserting the vacuum state in all possible ways in the hadronic
matrix element considered, taking into account the Fierz relations given in Eq. (A.3).
This approximation provides a simple though unjustified way to express the four-quark
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operators defined around one GeV in terms of meson ones at zero momentum. For the
Q, operator, one finds '

1
QP (M)p1a = QPO+ N Q0. (4.10)

1
The factor N arises from the projection of the “Fierz induced” Q, operator on color-

-singlet external states. The V.I.A can be viewed as a momentum-independent “evolution”.
Consequently, the physical amplitudes remain M-dependent (see Eq. (4.9)) and predictions
strongly depend on the optimism of the theorist involved. Since the strong coupling «, be-
comes large around one GeV, the more you trust perturbative QCD at low scale, the better
you can reproduce the empirical AT = 1 rule. Moreover, a comparison between Egs. (4.9)
and (4.10) shows that the low “V.L A evolution” has the wrong sign and leadsto a Al = &
suppression and a Al = 3 enhancement (see Fig. 22). This flip of sign around one GeV

1
has no physical justification and illustrates the sickness of the V.I.A. In the language of v

expansion, the V.I.A includes only one part of the next-to-leading terms and is then not
consistent.

This observation has also an important implication for the D and B meson weak
decays. Of course, an estimate of the “meson evolution” only in terms of the low-lying
pseudoscalars does not make much sense for these heavier systems. However, the flip
of sign implied by the popular “V.L.A evolution” remains unlikely. It is therefore better

$ Amplitude

K® »n*n
Quark-Gluon

K”Tt’]‘[o - 1 1 1

q (GeV)

1
Fig. 22. A sketch (full lines) of the solution to the A7 = %— rule in the N expansion approach. The dashed

lines correspond to the popular vacuum insertion approximation and the dotted lines, to a large-N approxi-
mation for the hadronic matrix elements only
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N 1 3 $
(see Fig. 22) to stay at the leading order in the v expansion for the hadronic matrix

elements (no evolution at all below the D(B) mass scale) than to include a partial next-to-
-leading contribution with the wrong sign relative to the known short distance evolution
above mypg,. This might explain the rather surprising success of the large-N approximation
[35] (¢ = 0 procedure [36]) in D-decay amplitudes. If the justification given above is the
correct one, the large-N limit should also be successful for the hadronic two-body B-decays.

The results of a complete study of the K — nn decay amplitudes at the next-to-leading

1
order in the ¥ expansion has been presented in Ref. [32]. In particular, chiral corrections

have been included below M and the renormalization group equation has been used [37]
above M. The experimental K — nn decay amplitudes given in Eq. (4.4) are then reproduc-
ed within 309 (see Eq. (7.6)). Consequently, the A/ =% rule can most probably
be explained in the framework of the standard model, although the final answer to this
long-standing puzzle requires further investigations inside the physics below one GeV [38].

Fig. 23. The box-diagram (gnd its low-energy representation) responsible for a CP-violation in the K?— K¢
mixing

The explanation of the A7 = 1 rule in K-decays advocated in Ref. [32] is mainly
based on the fact that for low loop-momenta, the logarithmic operator evolution derived
[34] within perturbative QCD is turned into a physical quadratic one, giving rise to sizeable
long distance effects despite the small range of integration. This scenario sketched in Fig. 22

. 1 . . .
is easy to understand in the framework of the i expansion. Perturbative QCD corrections

1
are controlled by the dimensionless expansion parameter o ~ 7\/_ On the other hand,

in the meson theory truncated to the pseudoscalars, the color factor N only appears through

the dimensionful decay constant £, (see Eq. (2.5)). Consequently, the long distance expan-
z 1
sion parameter must scale like ]q‘z ~N in the chiral limit m, = 0. The presence of vector

mesons around one GeV implies a new (N-independent) -dimensionful mass parameter
my which does not vanish in the chiral limit. The quadratic dependence on the g2-loop
momentum turns then smoothly into a logarithmic one. We expect therefore that the inclu-
sion of heavier resonances just improves the matching around one GeV, in a way very
similar to the case of the n+—n° electromagnetic mass difference treated in the previous
Section. The study of the vector meson loop-effects on another important weak hadronic
matrix element confirms our.expectation.
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5. The B-parameter

The well-measured e parameter provides a crucial constraint on the standard model
for electroweak interactions with three generations of quarks. In this framework indeed,
all the CP-violating effects must be triggered by the unique phase contained in the Ko-
bayashi-Maskawa mixing matrix. Thérefore, the observation of another CP-violation in
weak processes should in principle settle the question of its origin. It turns out that such
a new effect has been measured recently by the NA31 collaboration [39]. Nevertheless,
a general consensus among the theorists is still missing. The origin of this controversy is
again related to our present inability of treating strong interaction corrections to weak
processes below the one GeV confining scale. In other words, an understanding of CP-
-violation in the kaon system also requires non-perturbative methods [4] such as lattice,

1 . . .
QCD sum rules or v expansion to evaluate the hadronic matrix elements of associated

four-quark operators.

In the particular case of the sx parameter which describes the CP-violation in the
K°—K© oscillations, one obtains an effective AS = 2 current-current operator after integra-
tion of the (heavy) W-gauge bosons and top quarks (see Fig. 23):

0., = [5y,(1—ys)d]* = 42T, (5.1)

The hadronic matrix element of this operator is usually parametrized in the following way

_ 1
(K°0Q.,IK® =2 (1+ Iv') Bfi¢mk. (5.2)
The decay- constant fi defined by
COIKy = <K\l 10)*

i
= E‘fxp;lf (5.3)

is measured in K — pv leptonic decays (see Eq. (1.34)).

The parameter B introduced in Eq. (5.2) measures in fact the departure from the value
obtained using the V.I.A. Inserting the vacuum state in all possible ways and using Eq. (5.3),
we obtain [40] indeed

— 1
ROOR-oK"p = 214 1) ok 69

1 . .
The momentum-independent N -suppressed contribution is simply induced by the

“Fierzed” current-current operator (see Eq. (A.3)) projected on the color-singlet K-states.
The V.I.A. evaluates at zero momentum the hadronic matrix element of a four-quark
operator only well-defined above the one GeV confining scale. From Eqs. (5.2) and (5.3),
we conclude that

Byia(0) = 1. (5.5)
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We have already stressed in the previous Section that this extrapolation to zero momentum
has no theoretical foundation and should at most be considered as an order of magnitude
estimate of hadronic matrix elements. But tests of the electroweak standard model require
now a better determination of the B-parameter.

Another popular value for the B-parameter has been derived in the framework of
chiral perturbation [41]. The weak left-handed currents J2° = gfy,q; transform like
(8., 15) under the chiral SU(3), x SU(3)g symmetry. Consequently, the (symmetric) effective
weak Hamiltonian transforms like either (8, 1g) or (27, 13) under the same flavor Symme-
try. Let us now reexpress the weak Hamiltonian in terms of pseudoscalar fields. The simplest
object transforming like a left-handed octet is (8,UU"); and is proportional to the meson
current derived in the non-linear o-model (see Eq. (2.20)). Using then the unitarity of the
U matrix, we can build the effective weak Hamiltonian:

Hy = «(8,U8,U");+p@,UUO,UU+ ... (5-6)

with « and B, arbitrary couplings if nen-factorizable effects are important. The dots denote
2

higher derivative operators giving rise to effects which are suppressed by powers of %’ , A

being the chiral symmetry breaking scale of the order of one GeV. In the leading order
in this so-called chiral expansion, the weak Hamiltonian only contains one octet operator
(first term in (5.6)) and one 27 operator (second term in (5.6) after substraction of traces
and symmetrization over flavor indices). In this limit, the dominant Al = 4 weak operator
for the K°—nn decays is contained in the octet term. On the other hand, the AS = 2
operator defined in Eq. (5.1) and the Al = § operator responsible for the K+ — ntn®
belong both to the second SU(3)-invariant term in Eq. (5.6). The B-parameter can therefore
be expressed in terms of the measured K+ — ntn® decay amplitude and takes the following
normalization scale-independent value [41, 42]

}Bclxitad > % . (5'7)

The derivation of Eq. (5.7) has been done assuming flavor-SU(3) invariance. However,
we have seen in Section 2 that the observed splitting between the K and n decay constants
requires-the introduction of next-to-leading (in the chiral expansion) corrections to the
Lagrangian (2.1) of the non-linear o-model.

The large-N limit also implies the absence of short-distance (see Eq. (1.11)) and long-
-distance (see Eq. (2.5)) strong‘interaction corrections induced respectively by gluon and
meson exchanges between the two currents of the AS = 2 operator. Consequently, we have
a complete factorization of O,g.. ; into two currents as well as a control on SU(3) breakings
in this limit. Using Egs. (5.1), (2.20) and (2.24), we finally obtain

2mi
43

(K103, K> =2 <1 + )fzmnzc
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We conclude then that [43]
Byag =2 (5.9)

in the large-N limit. But why is this value precisely lying between the two popular values
derived in Egs. (5.5) and (5.7)?
It is rather easy to understand why the chiral result (5.7) is an underestimate of the

1
B-parameter in the framework of the v expansion. If we remove indeed the SU(3)-breaking

2
term given in Eq. (2.24), the predicted value § is already suppressed by a factor (;—") ~ 2
K

and we obtain By_ . ~ 3. The remaining numerical differencc with the chiral prediction
given in (5.7) results from the fact that the K+ — n*n® amplitude is also overestimated
by a factor ~ 3if we take the large-N limit in the associated hadronic matrix element.

1
The V.LA. result (5.5) includes one next-to-leading (in the v expansion) correction.

We must therefore go beyond the leading order to compare Egs. (5.5) and (5.9) and to
justify the large-N prediction.

-To estimate the next-to-leading strong interaction corrections to the AS = 2 hadronic
matrix element, we adopt the same philosophy as for the n+~n° electromagnetic mass
difference (Section 3) and the AI = § rule (Section 4). We divide the g2 loop-integration
into two parts by introducing a cut-off M. The integration below M is then made in the
truncated meson picture, a good approximation as long as M < 1 GeV. On the other
hand, the integration above M is carried out within the perturbative quark-gluon picture,
the non-perturbative effects being most probably small for M > 1 GeV.

Once again, the effects of the next-to-leading factorizable contributions are taken
into account by using the measured form factors of the AS = 1 weak current. Let us there-
fore focus our attention on the next-to-leading non-factorizable contributions. In the quark-
-gluon picture, they are due to gluon exchanges from one current to the other one (see
Fig. 21) and we obtain

3a My

1: In T[f} 08, (M?) (5.10)

0., (M3) = {1—

from the general relation (4.8). We stress again that in the chiral limit, the A = 4 penguin
contributions (see Section 7) are absent for this operator (see Eq. (5.6)).

The further “meson evolution” below M can be estimated in the meson picture trun-
cated (for a while) to the pseudoscalars. The non-factorizable contributions are induced
by the exchanges of n-fields between the two currents (see Fig. 24b) and we find [44]

4M?
(dnf)*

in the chiral limit. The meson one-loop correction to the Al = $ K+ — ntn® decay ampli-
tude (4.7) has the same quadratic dependence on the cut-off M. As we have already explained

OfR-,(M?) = {1 - } 043-2(0) (5.11)
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(see Eq. (5.6)), this is a consequence of the fact that in the chiral limit, the AI = % and
AS = 2 weak operators belong to the sdme representation of flavor SU(3). On the other
hand, the logarithmic dependence on M induced by chiral corrections are different.
Identifying the quark and meson AS = 2 operators at the scale M, we conclude that
the negative “quark-gluon evolution” from My down to M (Eq. (5.10)) is consistently
extended to lower loop-momenta by a further negative “meson evolution” (Eq. (5.11)).

{a)
n
? > 13 { ’ n
(b}

{c)

n! ?A H:A
\
(d)

Fig. 24. The (a) leading and the (b) pseudoscalar, (c) vector, (d) axial-vector next-to-leading contributions
to the B-parameter. The black box stands for the weak AS = 2 Hamiltonian while the black dot represents
a strong vertex

This is certainly not the case of the V.I.A, (see (5.4)) which gives again the wrong sign and
the wrong momentum dependence for the extrapolation from M to zero. The V.LA. is
obviously an overestimate of the B parameter.

Let us now introduce vector meson exchange contributions to improve the matching
between the meson theory evolution (~ g?) and the perturbative QCD evolution (~log ¢?)
of the AS = 2 operator. The new diagrams are given in Fig. 24c and can be estimated
within the “hidden gauge symmetry approach” (3.15) of Bando et al. In the chiral limit,
we find

( 2
OETLM?) = {1 " g%))} 0-»(0), (5.12)
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with
F(M?) = (~4+ 3 a—-%a*)M?
M? M?
-3 a(5-2a)mi1n (1 + Tn?) -3 a*m; WL (5.13)

For my > M, we recover the result (5.11) valid at small momenta. Assuming a = 2 (see
Eq. (3.22)), we obtain [45]

2 2
FIM*) = =IM*~3imiin 1+-A—4- —ymz M 5.14)
= ' F My m,z, 3 my M2+m€,, (

namely an important modification of the momentum dependence around one GeV. The
matching with the logarithmic dependence arising from perturbative QCD is manifestly
improved. It results from this a better stability of the B-parameter (and consequently of

B

09 k

08 - N —p 00

0.7 F ——

0.6 N

e \ M (GeV)
) } i H 1 l\l 1 )] H .
04 06 08 1 12

Fig. 25. The B-parameter without (dashed) and with (full) vector meson contributions as a function of the
cut-off, for Aqcp = 0.3 GeV

the K+ — n+n® decay amplitude) with respect to cut-off variations around the vector
mass scale. Including chiral corrections (mg # 0) below M and using the renormalization
group equation to reexpress the short distance evolution (5.10) in terms of the running
o, coupling defined in (3.4), we obtain Fig. 25 for Agep = 0.3 GeV.

The axial-vector-pseudoscalar 4,V,n coupling being non-derivative, we do not
expect important modifications from axial meson exchanges (see Fig. 24d). In fact an expli-
cit calculation in the framework of the “hidden gauge symmetry” approach extended to
a local U(3), x U(3); (see Section 3) gives an expression similar to Eq. (5.14) with
the factors —3, —3 and —3 replaced by —1%% —£3 and —%7, respectively (in the
chiral limit). Consequently, we restrict ourselves to the meson theory truncated to the
pseudoscalars and vectors which is more reliable [27].

Contrary to the case of the n+—n® electromagnetic mass difference, (see Eq. (3.6)),
the identification of the g2 loop-momentum of the gluon with the ¢? loop-momentum of
the virtual meson, although physical, is not rigorous since the W-gauge bosons are already
integrated out (see Fig. 23) in Eq. (5.1). Such an approximation turns out to be quite good
in the case of the K; —Kg mass difference (see next Section). A rescaling of the g2-mo-
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mentum in the quark-gluon picture being equivalent to the inverse rescaling of AéCD in
the running coupling constant «,(g2) (see Eq. (3.4)), we try to take this source of uncertainty
into account by varying the parameter Aqcp from 0.1 GeV to 0.4 GeV. The resulting value
of the B-parameter is increasing for decreasing Aqcp and we obtain [45]

B1 = 0.75+0.15 (5.15)
N

1
namely a small (next-to-leading in the ~ expansion> correction to the large-N predic-

tion (5.9). This result has to be compared with the predictions of other nonperturbative
methods [46]:
Bhttice = 0.8 iO.Z,V

BQCD sum rules — 0.5+0.14-0.2,
Bhadronic sum rutes = 0.331+0.09. (5.16)

The real discrepancy between (5.15) and the result of hadronic sum rules requires further
investigations.

Unfortunately, the B-parameter itself cannot be extracted directly from experimental
data. The CP-violating parameter e is indeed proportional to Bsin dgy, With gy the
Kobayashi-Maskawa phase, and strongly depends on the top quark mass. Therefore, any
prediction on the B-parameter requires an estimate of the measured Ky — Kg mass difference
within the same non-perturbative framework.

6. The K, —Kg mass difference

Long-distance AS = 2 K°—K© transitions induced by pion loops are expected to be
as large as the tygical weak decay width (see Fig. 26a). Consequently, off-diagonal terms
arise in the K°—KP° squared mass matrix and a diagonalization is necessary. The resulting

w Ke w
e n
Ko n Ko K }Zo
W
W
{a (b)
d W s
Ke UOU Ko

s W d

(c)
Fig. 26. (a, b) Meson, (¢) quark-loop-contributions to the Ky —Ks mass difference



physical eigenstates are then

2(K°+K°), K = -1—_(K°V—K°), 6.1)

=7 7

if (tiny) CP-violating effects are neglected. The loop-induced K; — K mass splitting Am
being of the second order in the Fermi coupling Gy and in the Cabibbo angle, we define

Am = mL"'"ms

Gy
(\/2) (Vud%s) 4n 2fl( KM2 (6‘2)

on dimensional grounds (see Fig. 26). Experimentally, the regeneration of the short-
-lived K via matter interactions allows a remarkably precise determination of this mass
splitting:

(Am)eyp, = (3.52140.014)107'° GeV
~ 1T (6.3)
From Egs. (6.2) and (6.3), we conclude that
M ~ 1.86 GeV. 6.9

The theoretical estimate of this scale M has in fact a very long story which can be sketched
in the following way.

In the late sixties, loop calculations supplemented by current algebra techniques [47]
led to the suggestion that the weak interaction cut-off M might be identified with the mass
of the hypothetical W-gauge boson:

M ~ My, ’ (6.5)

In 1974, Gaillard and Lee [40] presented their estimate of the quark box-diagram based
on the GIM mechanism [48]:

M? ~ mf-—mﬁ. (6.6)

This theoretical prediction for the charm quark mass was confirmed a few months later
with the spectacular discovery of the J/p. The magnitude of the K; — K mass difference
was eventually understood.

However, the presence of the up quark mass in Eq. (6.6) indicates that long-distance
effects induced by pseudoscalar exchanges and loops might be non-negligible [49]. Further-
more, short-distance strong interaction corrections [50] to the box-diagram itself introduce
another source of uncertainty:

M? > nocpm?; 07 < fqep < 1.0 6.7
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due to our ignorance about the QCD scale (0.1 GeV < Ayep, < 0.3 GeV). Finally, the
appearance of a (current or constituent ?) strange quark mass dependence in the estimate
of the box-diagram with external momenta [51] totally obscures a possible separation of

short- and long-distance contributions to Am:
2
2 2,2 21 Me
M > m;+5mgln 3 (6.8)
8

We have seen in Section 5 that a further uncertainty on the K; — Ky mass difference
arises from the estimate of the hadronic matrix element for the short-distance AS = 2
weak operator. The B-parameter measures indeed the deviation from the vacuum insertion
approximation used in Ref. [40]. Fifteen years of theoretical investigation led to predictions

ranging from B = —0.4 to B = 2.8. Recently, new non-perturbative techniques have
been developped, giving rise to refined estimates. The range
13<B<1 6.9)

fairly summarizes the present status of the B-parameter (see Eq. (5.16)).

In the large-N limit, single pseudoscalar exchange contributions and short-distance
QCD corrections are 1/N? and 1/N suppressed, respectively. On the other hand, we have
(see Eq. (5.9)

B = 3/4+0(1/N) (6.10)

such that the uncertainties listed above simply disappear. Last but not least, a clean long-
-short distance separation is feasible in this limit. We can indeed divide the integration
over the g>-momentum of the virtual W-gauge bosons into two parts [52]. Below the cut-off
A = 0(1 GeV), we use the non-linear 6-model truncated to the pseudoscalars (Fig. 26a, b)
with mg < A2, Above this cut-off, we estimate the standard quark box-diagram contribu-
tion to the K, —Kg mass difference (Fig. 26¢) with mg > A% We emphasize the identity
of the meson and quark loop-momenta. This simple complementary approach has been
successfully applied to the electromagnetic n+—n° mass difference in Section 3.
A straightforward one-loop calculation gives then

2
me
Ld2 = m:—A2+m,2(ln-—/-17 —'% mf(

2
+3 A2 =3 mi 1nA—2 +iimd (6.11)
mg
for the quark and meson contributions, respectively. We notice a remarkable stability
of Am with respect to variations of the cut-off A between the kaon and charm quark masses
(see Fig. 27). A minimum occurs for A = 0.76 GeV = m,, independently of the charm
quark mass. For m_ = (1.5+0.1) GeV, we conclude that

Am = (0.8+0.1)Am"™® (6.12)
in the large-N limit.
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Fig. 27. The Ki—Ks mass difference as -a function of the W-gauge boson momentum cut-off, for
me = 1.5 GeV (full line), 1.6 GeV (upper dashed-line) and 1.4 GeV (lower dashed line)

We notice that an estimate of M2 with the W-propagators integrated out, would have
given
2

m
2 2 c 2
M® = m; A2+§m,2(1n 5 > mi

2

4
+3A*-3mi 1nm—2‘ +3 mi (6.13)
K

namely a 59 correction to Am. This result provides therefore further confidence on the
similar approximation used for the AI = % rule (Section 4) and the B-parameter (Section 5).

Up to now, we have neglected the short-distance top quark contributions to the box-
-diagram. Although the associated Kobayashi-Maskawa mixing angles are small, a heavy
top quark could in principle give rise to sizeable corrections. Assuming 40 GeV < m,
< 130 GeV and imposing the experimental constraints arising from B-physics (oscillations,
semi-leptonic decays), we obtain a positive contribution to the K, —Kg mass difference

0.05 < Am(tt, tc)/Am™ < 0.15. (6.14)

In conclusion, we have successfully estimated the K;—Kg mass difference in the
large-N approximation. Our result supports the large-N prediction on the B-parameter
(see Eq. (6.10)). Similar calculations based on the lattice.and. QCD sum rules non-perturba-
tive approaches are now requested to settle this important question.



298

The knowledge of the B-parameter implies a better control on the unique CP-violating
phase of the standard electroweak model. The prediction given in (5.15) allows indeed
a rather precise determination of the unique Kobayashi-Maskawa CP-violating phase
from the experimental value of &¢. We are then in a position to make a prediction on the
CP-violating quantity &'.

7. Penguins, AI = % rule and ¢'le

The so-called penguin diagrams given in Fig. (28) have been introduced [33] to explain
the Al = 4 rule. The gluon coupling being vector-like, they can indeed induce the following
(V—4) (V+ A) operator:

Q,= Z {iz(la)”vu(l —75)d;} {G(A)", (1 +y5> ql}, (7.9)

2

with i, j, k, I, the color indices and ¢ = u, d, 5. The Fierz relations given in (A.3) imply

Q, = —8(5Lqp) (TrdL) (7.2)

in the large-N limit. Consequently the density-density penguin operator ‘Q, vanishes [53]
at the leading order in the chiral expansion (see Eq. (2.2)). The derivative term introduced
in Eq. (2.23) turns out to be the unique contribution [54] to Q, at the next-to-leading order

W
S, mq
Eg
q

oy
Fig. 28, The AS = 1 penguin diagram
in the chiral expansion. Notice that “tadpole” operators (mU+)y, induced by the non-

-derivative terms can be rotated away by a ficld redefinition. Consequently, they do not
contribute to physical processes. We obtain then

£hr . AN G
2 'T{(U”rga")(‘”'rs”)}

fat-rz
T anZ

@, us,un)*+0 (Zl‘i) . (7.3)
o
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The penguin operator Q, is obviously a pure Al = 1 octet one (see Eq. (5.6)) and can be
reexpressed in terms of the Q5(0) and Q3(0) operators defined in Egs. (4.2) and (4.5)
respectively. In the octet approximation, Tr(0,UU*) = 0 such that

2

Qp = _Ar_g(Ql—Qz)

=~ 16(Q, — Qz). (7.4)

in the large-N limit (see Eqs. (2.3) and (2.27)). As we expected from a comparison with
the short-distance evolution (4.9), the last operator in the “meson evolution” (4.6) is pre-

cisely the penguin one, which contributes constructively to the AI =  amplitudes. The
r? 1 ’ ) A

enhancement factor T appearing in (7.4) partially compensates the typ1cal4—
m, v

suppression factor associated with the one-loop QCD-induced diagram of Fig. 28.
Defining the ratio

AK® - n*n7)
R=——7 7.5
AK* - n*n) (3)
we find [32] (for Aqep = 0.3 GeV):
130 if m, =125MeV
R =4117 m, = 150 MeV
10.9 m, = 175 MeV (7.6)
to be compared with the experimental value (see Eq. (4.4))
R™ ~ 15, a7

The “weight” of the penguin diagram in the K — nr Al = } enhancement can be inferred
from the dependence on the strange quark mass defined at one GeV. It is worth stressing

1
that the. same N approach applied to the nt—n° electromagnetic mass difference also

favors a small value for m(1 GeV) (see Eq. (3.28)).

The penguin diagram with a virtual top quark (see Fig. 28) gives rise to a direct CP-
-violation in K — nn decays, independently of the K°—KP° oscillations [55]. At the top
quark mass scale, a short-distance calculation is reliable and we can express the CP violating
parameter £ in terms of the B-parameter and the strange quark mass arising from the
AS = 2 and AS = 1 hadronic matrix elements respectively. As we have seen, these quanti-

1
ties can be estimated in the v expansion approach for Aqgcp = 0.3 GeV. We obtain

[56, 57]
¢ 0.7) {120 MeV )2 .
(“;—)% = (2.5i‘ 1.5) {-E'} {m} 10 (7.8)
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for 55 GeV < m, $ 130 GeV and assuming [58] 0.01 S R = I'(b — w)/['(b - ¢) < 0.06.
This result is consistent with the new measurement [39] of the NA31 Collaboration

(%) = (33£1.1)1072, (1.9)

For illustration, the central experimental value is reproduced for m, = 70 GeV and
R = 19%,. We stress that the prediction (7.8) has been entirely derived in a well-defined

1 . . . . .
theoretical framework, the v expansion approach, which provides us with — a satisfactory

description of the AS = 1 K — nn decay amplitudes (A] = 7 rule); — a consistent estimate
ofthe AS = 2 hadronic matrix element {B-parameter), and consequently, of the CP-violating
Kobayashi-Maskawa phase.

In conclusion, we believe that the clash between the large AT = % octet enhancement
and the small value of ¢'/e is only apparent and cannot be used to advocate new physics
beyond the standard model. The 1/N expansion approach indicates that physics below one
GeV is indeed quite important for the real part of K — nrn decay amplitudes but negligible
for their imaginary part.

8. Remarks and conclusion

Strong interaction quantum corrections to hadronic matrix elements are usually
estimated within the SU(N)qcp quark-gluon theory. Asymptotic freedom allows a perturba-
tive treatment of an amplitude as long as the loop-momentum is large compared to the
typical one GeV confining scale. In these lectures, we have emphasized the importance
of physics below one GeV for light meson processes. A large fraction of the n+—n° electro-
magnetic mass difference, of the K » nn weak decay amplitudes and of the K;—Kjg
mass difference arise from long-distance effects which can be estimated in a meson theory
truncated to the low-lying bound states. Using the virtual photon (W-gauge boson) as
a cheap probe, we find hints of the expected duality between a full meson theory and QCD
in electromagnetic (weak) hadronic matrix elements, once the vector meson loop effects
are taken into account. Eventually, both the theory with an infinite number of mesons
(and glue-balls) and QCD should give the same strong interaction physics and, in particular,
identical infrared and ultraviolet behaviours. It is therefore legitimate to ask if the well-
-known ultraviolet behaviour of QCD, namely asymptotic freedom, is already emerging
from the meson theory truncated to the pseudoscalars and vectors.

In the chiral model defined in (3.15), the tree-level decay constant of the pion f, is modi-
fied by one-loop meson corrections (see Fig. 29):

fo = FX(M?), (8.1)

with

M2 2 M2
X(M*) =1+n[-1+7 ](4},)2 T‘%na(“%‘f)—z]n(i-i— —n?) (8.2)
1 4
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Fig. 29. Pseudoscalar and vector meson next-to-leading corrections o the decay constant f;
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Fig. 30. Scale-dependence of the pseudoscalar mesons (dashed curve) and of the pseudoscalar plus vector
mesons (full curve) one-loop corrections to the decay constant fy

2

M
For m¢> M? and n =3, we recover the relation f, = f [1—3 W] derived [32]
T,

in the meson theory truncated to the pseudoscalars. The function X is represented in Fig. 30
for the case of three flavors (n = 3) and a = 2.

On the other hand, the short-distance QCD corrections above the cut-off M must
induce a momentum-dependence in f to keep the physical decay constant f; scale-inde-

1
pendent. In the Wexpansion approach, the usual short and Jong-distance expansion

parameters for strong interactions are respectively (see Egs. (1.11) and (2.5))

1 ' 1
~ =, 4nf) "2 ~ — 8.3
a~ = (4nf) ~ (8.3)
such that one expects
fM?) ~ {o(MD}12 (8.4)

around one GeV. Consequently, the decrease of X(M?) for increasing values of the cut-off
observed in Fig. 30 can be interpreted as a precocious asymptotic freedom behaviour.
This nicely illustrates the role of the vector mesons in the matching with perturbative'QCD.
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1
In conclusion, the complementary approach based on the non-perturbative x expan-

sion enables us to analyse consistently the important interplay between electroweak and
strong interactions around one GeV. We feel that this simple analytical method can give
rather useful informations about new physics. In particular, we have seen that the A] = &
rule, the K; — K mass difference and the CP-violating '/ parameter do not seem to require
physics beyond the standard model. Physics below one GeV tells us something about physics
above one TeV. For example, the K; —Kg mass difference has been extensively used to
constrain physics beyond the standard model. From the large-N approach presented here,
we conclude that

|Am (new physics) | < 0.1 Am™®, (8.5)

Consequently, stronger constraints on hypothetical particles are allowed. For instance,
the lower limit on the right-handed W gauge boson [59] reads now

My, >5TeV (8.6)

in the (pseudo-) manifest left-right symmetric extension of the electroweak model.

I thank Bill Bardeen, Hans Bijnens, Andrzej Buras, Svjetlana Fajfer and Reinhold
Riickl for enjoyable collaborations. Thanks are due to J. Donoghue, B. Guberina,
L. Maiani, P. Minkowski, R. Peccei, T. Pich, E. de Rafael, B. and F. Schrempp and M. Shif-
man for very useful discussions.

APPENDIX A

Short-distance n*—n° mass difference

Let us estimate the one-loop contributions associated with the Feynman diagrams
of Figs. (13a) and (13b) in the chiral limit (m, = my = 0). Using the relations

G G = 1005 (7 — 6(™5) (ay™),

G7'Y) 0y = 1007 (v +6(r"ps) (vay°) (A1)
we find respectively:

dq? A A
Iy = | = {F Q-9 a7, = @ =
» fq4 {+( ¢ )[qv 2 Qq] [qv 2 Qq]
_ id o Ra
=31 rars 5 Q4 || @5 5 94 |( * %eeniacp (A2)
such that I,+1, is gauge-independent. From the “Fierz” relations

1
QO =2 (5”5” -5 5"5"') [317.(1 - y5)42] [@57"(1 —75)44]
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= [7,7.(1—75)4] [33Y (1 —¥5)42] [G17.(1 —75)42] [2:Y" (1 +75)a4]
= —2[7,(1 +75)94] [35(1—75)q.], (A3)

with i, j, k, I the color indices, we obtain in the large-N limit

dq®
L = —*‘j\ z [2(1+75)Qq] [3(1—75)Q4q],

d
Iy = =3 Jl"q%‘ [Fy.(1— 75)Q9[3y"(1 —75)Qq] (A4)

for £ = 1(4) respectively. In the chiral-limit (m, = 0), the current-current operators sand-
wiched between two pions vanish so that we are left with density-density hadronic matrix
elements. Consequently for £ = 1(4), only the first (second) diagram of Fig. 13 contributes
to the mass splitting. The correspondence between the meson contributions (Fig. 12)
and the quark-gluon contributions is therefore striking. From Eq. (2.2), we can express
the density-density operator appearing in (A4) in terms of meson fields:

dq2
Iy = "33? “Qm)f 4 J ? (“QCD"Z) Tr (QUQU+)~ (AS)

The product (agcpr?) is almost scale-independent. In fact the renormalization group
equation implies a weak [¢qcp(g?)/aqen(#?)]'/® dependence. Neglecting this dependence
and expanding the meson operator in (AS5), we finally obtain the result given in Eq. (3.3).

APPENDIX B

A simple derivation of Weinberg sum rules

Let us consider the following hadronic matrix elements for the axial and vector currents
i
g™y = + 5 f*w
OUnlary = =% famatu

OLIR™Y = —%fymye,. (B1)

If we saturate the vector-vector two-point function with the g-exchange and the axial-axial
one with the a4, and m-exchanges, we find respectively [60]

KIVQI (=) ~ (—fY—V)E-(—gM f’—fl—> (B2)
q9°—m m

14 14
and

4K @IA (- )y ~ T (—g,,y+ "“‘i’) 5 g (B3)
‘1 m q

A
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In the case of an exact chiral SU(2), x SU(2)z symmetry, Eqs. (B2) and (B3) are identical
and we obtain f, = 0, m, = my, f, = f,. On the other hand, if the spontaneously broken
SU(2), x SU(2)x symmetry is restored only at very high momentum (g — o0), we obtain
the famous Weinberg sum rules

f=ri+fl fmy =fum, (B4)

by identifying the coefficients of 4,9, and g, respectively. The relations (B4) together with
the KSRF relation (3.21) lead to Eq. (3.25).
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