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Gauge theories defined in higher dimensions can be dimensionally reduced over coset
spaces giving definite predictions for the resulting four-dimensional theory. We present
the most interesting features of these theories as well as an attempt to construct a model
with realistic low energy behavior within this framework.
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1. Introduction

During a few last years there has been an intensive activity in attempts to unify all the
fundamental interactions using the notion of higher dimensions which was originated by
Kaluza and Klein [1]. The Kaluza-Klein scheme itself had limited success due to its inability
to accommodate the observed chiral world and to justify the assumed space-time configura-
tions. A solution to these problems can be attained by the introduction of extra matter fields
in higher dimensions [2]. As a bonus it seems now that the introduction of gauge theories
in higher than four dimensions provides not only a solution to the Kaluza-Klein problems
but also a very useful framework to describe the four-dimensional low energy interactions.
It is also well known that the introduction of gauge theories in higher dimensions is very
well motivated in superstring theories [3].
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In gauge theories defined on a higher dimensional manifold M”, in order to maintain
the four-dimensional Poincare invariance one has first to assume that M” compactifies
to M* x B, where B is a compact space. The length scale of B is assumed to be of the order
of the Planck length, a fact which makes B unobservable to the real world. The second
step that one has to make in order to describe the observable four-dimensional world is to
dimensionally reduce the theory or in other words to make the Lagrangian independent
of the extra coordinates, and to integrate them out. Thus, the four-dimensional theories
should be considered as effective theories obtained from the higher dimensional ones
through some kind of dimensional reduction-procedure.

A naive and crude way to make the four dimensional Lagrangian independent of the
higher than four coordinates is to set to zero the field dependence on the extra coordinates.
A much more elegant way is to allow a field dependence and employ a symmetry of the
Lagrangian. In that case an obvious choice is to use the gauge symmetry [4]. Then the
Lagrangian is independent of the extra coordinates just because it is gauge invariant. In
fact, there exists an attractive approach to reduce dimensionally gauge theories which
is based on this idea, namely the Coset-Space-Dimensional-Reduction (C.S.D.R.) scheme
[4-10, 16]. In this scheme one starts with a pure Yang-Mills-Dirac theory based on a gauge
group G and defined on a manifold M” which compactifies to M* x S/R (D = 4+dim S/R),
M* is a four dimensional Minkowski space and S/R a compact coset space. It is further
assumed that transformations of the fields under symmetries of S/R are compensated
by gauge transformations. This requirement implies definite constraints on the higher
dimensional fields and allows a detailed examination of the various features of the effective
four-dimensional theory.

One of the most attractive features of the C.S.D.R. scheme is that chiral fermions
can be obtained [5] in four dimensions even if the higher dimensional theory is vectorlike.
A lot of progress has been made in the construction of realistic models {7-10] resulting
from higher dimensional theories via C.S.D.R., despite the very limited freedom of the
method. In the process, various techniques have been applied especially the Wilson-flux
breaking mechanism [10, 11] using certain discrete symmetries of S/R. However given
that gravity is intrinsically involved in the C.S.D.R. one cannot ignore it and eventually
has to consider the higher dimensional theory together with gravity [13, 14, 15]: It is interest-
ing that there exists a classical solution of the Einstein-Yang-Mills-Dirac Lagrangian,
corresponding to the C.S.D.R. requirements. Nevertheless the existence of the above
classical solution introduces new constraints when discrete symmetries are used in order
to break the four dimensional gauge group. In addition a large cosmological constant
is required in the higher dimensional theory which can be avoided at the cost of introducing
torsion in the coset space [15].

In the present paper we shall present an overview of the C.S.D.R. scheme and some
applications. Sect. 2 serves as an introduction to some of the features of the scheme. In
Sect. 3 we briefly discuss some geometrical and topological properties of the coset spaces
which are used in Sect. 4 in an example of the models that can be obtained using
the C.S.D.R. scheme. Finally Sect. 5 contains our conclusions.
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2. The C.S.D.R. scheme

In this Section we present a review of the dimensional reduction procedure known
as C.S.D.R. scheme [4-10, 16]. Consider in D-dimensions a Yang-Mills-Dirac theory with
gauge group G defined on a manifold M” which is the direct product of a four-dimensional
spacetime M* and a compact coset space S/R, D = 4+d where d = dim (S/R) = dim S
= dim R. The action in D dimensions is:

- - Po_
A= fd“xd” ‘yJ—g {—% Tr (FyunFr)g" g™ + - #r ”Duw} . )

We use here Greek letters to denote curved indices (while Latin letters later on will
denote flat indices); K, A, M, N run over the D-dimensional space, u, v, 4, over M* and
a, B, y, over S/R.

The fields 4, v are assumed to be symmetric in the sense that any transformation
under symmetries of S/R (which form the isometry group S of S§/R) is compensated by gauge
transformations. We note that we can start from any representation F of G for the fermions
if no further symmetry as supersymmetry is required. So if g(s), f(s) are gauge transforma-
tions in the adjoint and F irreps of G corresponding to the transformations acting on S/R,
we require:

A%, y) = g(DA(x, s~ 'y)g (9, 2
A (x, y) = g(s) ZEA4(x, 5™ ' »)g™ () +8(s)0.87 '(s), 3
w(x, y) = f()Qp(x, s ') f 7 (s), “

where 2} is the Jacobian matrix for the transformation s and Q is the Jacobian matrix
plus a local Lorentz rotation in the tangent space which is needed for the fermions when
they transform in a curved space.

These conditions imply certain constraints that the D-dimensional fields have to obey.
The solution of these constraints will provide us with the four-dimensional unconstrained
fields as well as with the gauge invariance that remains in the theory after dimensional
reduction. The simplest case occurs when the group S is abelian and R = I. In that case
one can immediately solve the constraints choosing a gauge where the fields are explicitly
independent of y. However in the general case the internal symmetry G and the space
symmetry S combine in a non-trivial way as it is dictated by Egs (2)-(4).

From Egq. (2) it follows that the components 4,(x, y) of the initial gauge field 4,(x, )
become after dimensional reduction the four-dimensional gauge fields and furthermore
they are independent of y. In addition one can find that they have to commute with the
elements of the R subgroup of G. Thus the four-dimensional gauge group H is the centralizer
of Rin G. We note here that this particular constraint resulfs in a reduction of the number
of the degrees of freedom as a consequence of the non-trivial combination of the internal
symmetry G and space symmetry S.

Similarly from Eq. (3) the 4,(x, y), denoted by &, from hereon, components of 4y(x, )
become scalar fields in four dimensions. These fields transform under R as a vector v speci-
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fied by the embedding of Rc §
adj (S) = adj (R)+v. (5)

Moreover @(x, y) act as intertwining operators connecting induced representations of
R acting on G and S/R. This implies, exploiting Schur’s lemma, that the transformation
properties of the fields @,(x, y) under H can be found if we express the adjoint irrep of
G in terms of reps of (R, H)

adj (G) = } (ri, hy). (6

Then if v = Xs;, where each s; is an irrep of R, there is an A, scalar multiplet for every
pair (r,, 5,) where r, and s, are identical irreps.

Turning now to the fermion fields [5] we see from Eq. (4) that they act as intertwining
operators between induced representations of R acting on G and the tangent space of S/R,
SO(d). The non-trivial solution of the constraints can be obtained if we proceed along the
same lines as in the case of scalars. Applying Schur’s lemima in this case, one has to decom-
pose F, the representation of G in which the fermions are assigned, under Rx H

F =3 (n h), Q)
then decompose the spinorial representations of SO(d) under R
Gy = Z Oy . (8)

It turns out that for every pair (r, o,) where r, and o, arc identical irreps there
is an h, multiplet of spinor fields in four-dimensional theory. In order, however, to obtain
chiral fermions in the effective theory we have to impose some further requirements. First,
if we start with Dirac fermions thete is no possibility to obtain chiral fermions in four
dimensions. Next we impose Weyl condition in D dimensions. This requirement forces
us to assume that D (and d) is even. In D even we can find a basis of the I’ matrices in which
r°*! = 45 x9**! Imposing the Weyl condition in D dimensions means that y has definite
chirality under I'’*'. Let us choose I'’**y = y. The eigenvalues of y° and y**' have
now to be simultaneously 1 or — 1. In other words in D even vy can be written as the direct
sum of Weyl spinors

¥ =0p+t op, )]

with the following SO(4) x SO(d) branching rules:
Op = (23 1, ad)+(1a 29 acll)a 0';, = (2: 19 O':;)'f‘(l, 2’ 0'4)- (10)

When we apply the Weyl condition we pick up one of the Weyl spinors in the decomposi-
tion (9). In order to proceed we have to decompose o, and g, under R

04 =3.0;; 0O;=2) 0 (11)

and apply the rules to obtain the unconstrained fields. Since we have already required
D to be even there exist two possibilities, either D = 4n or D = 4n+2. If D = 4n there
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are two self-conjugate spinors o, and o}, and the only possibility to obtain a chiral four-
-dimensional theory is to start with F complex. However in D = 2+ 4n dimensions there
is one non-self-conjugate spinor and the other is . So now instead of Eq. (11) we have
the decompositions 6; = Zo, and 6; = Zo,. An important aspect to note here is that these
decompositions would be the same if R had only real representations, furthermore they
are also the same if rank R < rank S. So we choose S, R in such a way that
rank S = rank R. Suppose now that we start from a vectorlike representation F. Then
each term (r,, &) in the decomposition of Eq. (8) will be either self-conjugate or it will
have a partner (r,, &,). According to the rule described in Eqs. (7), (8), if we consider o, the
four-dimensional left-handed representation f; = ZA{" is not vectorlike since Zg, is not
self-conjugate. In addition, from g, we have in four dimensions the right-handed representa-
tion f = Zh® = Th("M. Therefore there will appear two sets of Weyl fermions with the
same quantum numbers under H. These two sets of Weyl spinors can be identified if we
further impose the Majorana condition. Note that in D = 2+ 4n the Majorana condition
is diagonal with respect to the Weyl one so there is no problem in imposing both at the
same time. Furthermore if F is to be real then we have to have D = 2+8n while
for F pseudoreal D = 6+ 8n.

Next let us obtain the four-dimensional effective action. Assuming that the metric
is block diagonal,

g"(x) 0

MN
g 1, , 12)
0 Z8 "(»)

taking into account all the constraints and integrating out the extra coordinates we obtain
in four dimensions the following Lagrangian:

A= C[d*x{—§Tr(F, F")+% Y Tr (D,2,D"®,)— V(P)}

i
LC f 4*x 1 (BID,p+ FID,), (13)

where C is the volume of the coset space and the potential V(&) is given by the formula

(@) = % 8" Tt {(fa@p— Do @) (fed®e—~[®., 2]}, (14
where the indices D and E run over S. Furthermore D,, D, are the appropriate covariant
derivatives, D, = 0,—i4,, D, = 9,— ;—.@,,,,cz'”—i@a, where @, is the connection of S/R.

The above expression for V(®) is only formal because @, must satisfy the constraints
coming from Eq. (3)
.fag¢D_[¢a5 451] =0, (15)

where the index 7 runs only in the R-subalgebra of S. These constraints imply that some
components @,’s are zero, some are constants and the rest can be identified with components
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of the genuine Higgs fields. When V(@) is expressed in terms of the unconstrained inde-
pendent Higgs fields, it remains a quartic polynomial which is invariant under gauge
transformations of the final gauge group H, and its minimum determines the vacuum
expectation value of the Higgs fields.

It turns out that the minimization of the potential is a difficult problem in the analysis
of such theories, despite the progress that has been made [7]. However, if S has
an isomorphic image S; within G which contains Rg in a consistent way, then it is possible
to allow the @, to become generators of Sg. In this case the potential V(&) is zero, which
is clearly the absolute minimum value that it can take. These non-zero vacuum expecta-
tion values of the Higgs fields break the symmetry from H to K, where all elements of
K commute with the generators of S;. Thus one deduces that the final unbroken symmetry
group K is just the centralizer of Sg in G [6]. Recently it was shown that the fermions of
such a theory become all massive after spontaneous symmetry breaking [12]. Therefore
this attractive possibility is ruled out in searches to obtain the standard model from C.S.D.R.
of a gauge group in higher dimensions. Thus we return to the original problem, namely
to derive the scalar potential of the four-dimensional theory in terms of the genuine Higgs
fields and minimize it. We should also note here that if the space S/R is symmetric then
the potential is such that spontaneous symmetry breaking occurs and so H breaks
further [13].

3. The geometrical and topological properties of coset spaces

Investigating the geometry and topology of the coset spaces turns out to be quite
useful since important new features arise that can be used in physical applications [10].
Let us start by specifying the coset algebra S/R.

We assume that S/R is reductive but non-symmetric in general, so we can divide the
generators of S, Q, in two sets: the generators of R, Q; (i = 1, ..., dim R), and the genera-
tors of S/R, Q, (a = dim R+1, ..., dim S). Then the commutation relations for S are the
following:

[0, Q] = fi’;Qb [0.Q.] = foQs [0 00] = f:bQi'f‘f:va (16)

If S/R is symmetric then f3 = 0.
In general the metric of the coset space need not be the usual Cartan-Killing metric
of S restricted on S/R. The most general, S-invariant metric on S/R satisfies [17]:

fogaw+fugas = 0. an

This condition allows the introduction of different scales (radii) for each R-irrep
of the coset. To see this note that () serve as a matrix representation of R (one can prove
that using the Jacobi identities of the coset) which in general is reducible. One can write
(f)! in block form, these blocks in a way represent R-irreps and consequently Eq. (17)
forces the radii to be the same in each block. It should be noted that the coset indices
a, b, ¢, are raised and lowered employing the metric g,,, so such operations change in general
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the antisymmetry properties of the structure constants since they involve different radii.
We choose the structure constants defined by Eq. (16) to be fully antisymmetric.

The introduction of more than one radii in the coset has drastic consequences in the
theory. As we can see from Eq. (14) the metric and therefore the radii, are involved in the
calculation of the potential and as we shall see in an example in the next Section they
can change the symmetry breaking pattern.

Another important issue that arises from the examination of the topological properties
of the coset spaces is connected with the discrete groups that-act freely on them. This is
related with the use of the Wilson flux breaking mechanism in C.S.D.R. [10]. Dividing
B, = S/R by a freely acting discrete group F*'® makes B = Bo/F*/® non-simply connected
with 7,(S/R) = F*. This means that there will be contours not contractible to a point
due to holes in the manifold. It turns out that the surviving fields have to be invariant
under the diagonal sum F5'R @ T€, where TC is the subgroup of G which is generated
by the Wilson loops [10, 11]. In addition the final unbroken gauge group is the centralizer
of TS in G.

In the following we examine according to Ref. [10] the discrete groups which act
freely on coset spaces B, = S/R, which satisfy rank R = rank S. By freely acting we mean
that for every element g € F except the identity, no points of B, remain invariant.

There are two classes of freely acting groups F on B,. The first of them is just the
center Z(S) of S or its subgroups. The action of Z(S) on S/R is clearly free. Furthermore
in the decomposition of the adjS under R, every single representation of R and therefore
the vector of R transforms to itself under the action of the center. In order to accommodate
fermions in the scheme one has also to embed Z(S) in SO(d). An obvious choice of discrete
symmetry in SO(d) is the center or a Z, subgroup of it. Under this choice every single
R-irrep in the decompositions of the vector and the spinor of SO(d) will transform to itself.

The second class of discrete symmetries which act freely on By is W = Wg/Wy where
Ws, Wy are the Weyl groups of S, R respectively. In order to see that W acts freely on the
coset space S/R, consider the Lie group .S and its maximal abelian subgroup 4. It is known
that the Weyl group Wj acts freely on S/A4. As was noted in Section 2, in the physically
interesting case, we have in addition that rank S = rank R and one can select 4 in such
a way that 4 € R = S. If furthermore we extract from Wy the Weyl group of R then
W = Wg/Wy acts freely on the coset S/R.

We can illustrate how W acts on the representations of R, when we decompose the
adjoint of S under R by an example. Consider the coset G,/SU(3). The decomposition
of G, under SU(3) is 14 = 8+ 3+3. The root diagram of G, consists of the root: (i) zero
with degeneracy two (i) e;—e,, j# k=1, 2,3 (e, i = 1,2, 3 are the three-dimensional
unit vectors) which exactly form the root diagram of SU(3) accounting for the 8 in the
decomposition and (iii) +(3¢;—e,—e,—e3), j = 1, 2,3 which form 3 and 3. Reflections
in planes orthogonal to the long roots give W which in this case is just a Z, and transforms
3 to 3 and vice versa. Thus it is an outer automorphism of R. In order to maintain such
a transformation in the representations of R when we are looking at the embedding of
R in SO(6) we have to allow for outer automorphisms of SU(6) as well. In the above
example the spinor and the antispinor of SO(6) decompose under SU(3) as 4 = 1+3
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and 4 = 1+ 3 and clearly, if one is considering transformations of SU(3) that interchange
3 and 3, then also 4 has to interchange with 4 in SO(6). Since, however, the outer auto-
morphisms of SO(6) form just a Z,, one cannot maintain such a property if W is bigger
than Z,.

4. An example

In order to illustrate the C.S.D.R. method and to demonstrate the possibilities as well
as the difficulties in constructing realistic models, let us discuss a specific example. Consider
a Yang-Mills-Dirac theory with gauge group Eg defined in ten dimensions, which is dimen-
sionally reduced over the coset space S|R = Sp(4)/(SU(2) X U(1)non-max [9]:

The four-dimensional gauge group H will be, as we discussed, the centralizer of R in
G. So we have to embed SU(2) x U(1) into G. This can be done by using the following
decompositions:

Eg o SUB)xSU(5);  SU(S) > SU3) x SU2) x U(1). (18)

We choose SU(2) x U(1) in the latter decomposition to be the image of Rin G. It is obvious
from the abovet hat H = Cg (SU(2) x U(1)) = SU(5) x SU(3) x U(l) is the four-dimension-
al gauge group. ‘

In order to determine the surviving scalar fields we have to determine the branching
rule of Eg under SU(5) x SU(3) x (SU(2) x U(1))g- This is given by:

248 = [24, 1; 1O)]+1[1, 1; 10)]+[1, 8; 1(0)]+[1, L; 3(0)]
+[1, 3; 29)1+I11, 3; 2(=]+I[5, 1; L(O)I+I[5 1; U—6)]
+15,3; 1= 91+5,3; 20145, 3; 1@]+05, 3; 2= 1]
+{10, 1; 2(=3)]+[10, 3; 1(2)]+[10, 1; 2(3)]+[10, 3; 1(—2)} (19)
The decomposition of the adjoint of Sp(4) under (SU(2)x U(1))nop-max i
10 = 3(0)+ 1(0)+ 1(2)+ 1(—2) +2(1) +2( — 1). (20)

Therefore according to the rules given in Egs. (5), (6) the surviving fields in the four-dimen-
sional theory transform under H = SU(5)xSU@3)x U(l) as a complex B = (5,3)_,
and a comples y = (10, 3),.

In order to determine the fermionic content let us also start from the adjoint of Eg, so
the decomposition of F under R x H is again given by Eq. (19). The decomposition of the
spinor of SO(6) under (SU(2) X U(1))on-max 1S

4 =10)+1Q)+2(-1). @y

If we start from Weyl-Majorana spinors at ten dimensions the survivingfermions, according
to the rule described in Egs. (7)~(11), transform as (5, 3)_,, (10, 3),, (24, 1),, (1, 1), and
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(1, 8) (in fact the (24, 1)o, (1, 1), and (1, 8), become superheavy due to geometrical
terms [20]).

Next we need to construct the potential in terms of the unconstrained scalar fields.
To proceed we need also to specify the metric we are going to use. We can see from the
decomposition of Eq. (20), and from an explicit calculation of Eq. (17) (using the fully
antisymmetric structure constants of Sp(4) which are given by: £ = fiy = fo3 = f5 = 1,
f761 = "f752 =f851 =f362 =f921 = —f965 =f1201 =f1605 =1, f798 =ff‘os = 2, the indices
7, 8 9 and 10 refer to SU(2) x U(1) and the rest are in the coset) that the coset space at
hand can accept two different radii. Therefore the metric has the form:

8., = diag (R;zs er’ RZ—Z’ R;Z’ RIZ’ Rl—z)' (22)

For the construction of the unconstrained scalar fields we need to introduce the Eg and
Sp(4) generators according to the decompositions under R = SU(2) x U(1). In correspond-
ence with Eq. (20) we introduce the generators:

Tspey = {T% Ts, To, T, T, T3} (23)
Similarly corresponding to the first of the decompositions of Eq. (18)
Eg o SU(5) xSU(5), 248 = (5, 10)+(5, 10)+(10, 5)+(10, 5)+ (24, 1)+ (1, 24)
we introduce the following generators of Eg
QOr, = {Qu 07, 0", Qujr 01 Q1) (24)

where i,j,a, b =1,...,5; A = 1, ... 24. In addition corresponding to the second decompo-
sition of Eq. (18)

Eg o SU(5) x SU(3) x SU(2) x U(1),

248 = ... [1,1; 1(0)]+(1, 8; 1(O)]+[1, 1; 3(0)]
v +105,3; 201+ ... +1[5,3; 2(—1)]
. +[10, 3; 1]+ ... +[10, 3; 1(~2)]

we introduce the generators:

Qp, = {-sQ0, 0% Q% ..., Qb s QF, o, @Y% L, Qs o) (25)

The commutation relations of T°s and Q’s can be found in Refs. [9] and [18]. In order to
express the formal Higgs potential of Eq. (14) in terms of the genuine Higgs fields § and 7,
we need explicit expressions for the scalar fields @,. Again the decomposition in Eq. (20)
suggests the following change in the notation of the scalar fields &;:

(B =1,..,10}— {2, &, B, &_, D", D,,}. (26)

Then the solution of the constraiﬁts in Eq. (15) in terms of the genuine Higgs fields is
P, = \/1_5 Qos P =0%9, = ﬂijaQija, o = ﬂianijas

oL = B0, &,, = BiQu @n
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where o = 1,2,3;a=1,2,3;i,j=1,...,5; r = 1, 2. Now we can rewrite the potential
given in Eq. (14) taking into account the solution of the constraints given in Eq. (27) as:
V(®, Ry, Ry) = (1/2RY) Tr (#°¢° +&5) +(1/R32) Tr (¥o)
+(1/R—2/R$) Tr (®,8.)+1/RI(1/R; ~2/R)) Tr (2_9,,)
+(1/2R?*) (1/R? +>2/R§) Tr '{e,,q>_[q>,+, ®,,]-0, [0, 5]}
+(12RY) Tr {[97, 041 [9,,, &,,]+[9., 2,.1[¢%, &,.]}
+RIR; Tr {[9%, #_]1[®., 9,.1+[P2, ] [2-, 2,. 1}
+12R; Tr {[®_, ., ] [®-, 2. ]1}. (28)

Expressing the @’s in Eq. (17) in terms of the genuine Higgs fields f and y according
to Eq. (16) we obtain the following potential in four dimensions:

Vaaim = (1/89V(8,7, Ry, Ry)
= 18_/(g’k‘:)+30/(g2R;‘)
+ (4/g>) (1/RT=2[R3)y"y
+ (2/8*R} (1/R3—2/RDB™ B
+ (4/2°R}) [4(B" B)* +(1/5) (B.B:B3B]
+ (1/58°RiR3) [1926. 817" + 83268 007"
+ 3208.B5 7™ ]
+ (8/8°R3) [4yiay" uas?™ + 57" 0ia— (71?1 (29)

Before we examine further the above potential it is clear that Higgs fields § and y are not
appropriate for breaking the SU(5) part of the theory down. to SU(3). x SU(2) x U(1),
since none of them transforms as the adjoint of SU(5). It appears that this is a quit¢ general
phenomenon when G.U.T.’s are obtained in four dimensions via C.S.D.R. and for this
reason it was suggested [10] the use of Wilson flux mechanism for this breaking. In order
to apply the Wilson flux mechanism we consider instead of the manifold B, = Sp(4)/(SU(2)
X U(1))non-max the B = B,/Z3'®, where Z3/R is the center of Sp(4). In that case the vector
and the spinor transform to themselves under the action of the chosen discrete symmetry.
Then as we have discussed in Sect. 3 we can embed the Z3'® into the gauge group
H = SU(5) x SU(3) x U(1). We choose to embed it in a discrete subgroup of the U(1)
that appears in the decomposition SU(5) o SUB)xSU((2)x U(l) and in such a way
that leaves invariant all the matter fields. Therefore all the components of fermionic and
scalar fields are FS'® @ T invariant and therefore the only effect of Wilson flux breaking
mechanism is to break H down to SU(3) x SU(2)x U(1). We note that since at the quan-
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tum level of the four dimensional theory the coupling constants receive separate renormali-
zations, we can put the couplings of the last SU(3) x U(1) to zero [19].

Let us next return to the Higgs potential given in Eq. (29). We should emphasize the
interesting possibility that the spontaneous symmetry breaking or not of the gauge sym-
metry depends on the ratio of the two radii of the coset space Sp(4)/(SU(2) X U(1))non-max-
In particular it is important to stress the possibility of vanishing the mass term of the
Higgs field which is responsible for the electroweak symmetry breaking. In that case the
electroweak symmetry breaking is driven by radiative corrections and therefore can produce
the required hierarchy between the compactification and the electroweak scales. It is unfortu-
nate that this interesting possibility cannot be realized in the model under discussion since
there exist two Higgs fields § and y and therefore one has to consider the behavior at the
vacuum of both of them. One can easily convince oneself that at most one can arrange (by
choosing ¢ = (R,/R;) < (3)'/*) that B acquires v.e.v. while y does not. Then one has the
desirable situation that SU(2) x U(1) breaks down to U(1),,,, however the order parameter
involved is superheavy as compared to O(100 GeV) of the observed electroweak symmetry
breaking.

5. Conclusions

The C.S.D.R. method for reducing dimensionally gauge theories, which are defined
in higher dimensions, provides us with a very interesting framework for studying the detailed
predictions of the resulting four-dimensional theories. Geometrical and topological pro-
perties of the coset spaces can be used in mechanisms of spontaneous breaking of the gauge
symmetries. Of particular interest is the fact that a choice of radii in certain coset spaces
can produce light fermion and scalar fields. In addition the discrete symmetries of coset
recently spaces have been classified and can be used in the Wilson flux breaking mechanism.
With these qualifications it seems that we are not far from constructing a realistic model,
despite the fact that model building in C.S.D.R.is a very constrained game. Then inclusion
of gravity in the picture by adding the Einstein Lagrangian to the Yang-Mills-Dirac one
in higher dimensions is expected to provide us with compactifing solutions corresponding
to the assumed manifold M*x S/R in the C.S.D.R. scheme.
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