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We study the temporal behaviour of small perturbations of static kink-solutions of
the sine-Gordon equation on a finite line. Two classes of solutions are found. The first contains.
all oscillatory modes of the N kinks present, while the second class describes the scattering
of phonons by these kinks. For each solution the oscillation frequency is calculated and
plotted as a function of the length of the line.

PACS numbers: 03.40.Kf, 11.10.Lm

1. Introduction

The theory of sine-Gordon solitons on a finite line is of importance for a number
of phenomena in condensed matter physics. About ten years ago a few papers [1-2] were
published in which some exact solutions of the sine-Gordon equation with definite boundary
conditions at the end points of the line were exhibited and studied.

To the best of our knowledge, however, no classification of all possible standing
waves was ever presented for this system.

It is the purpose of the present paper to give such a classification by showing how
small amplitude oscillations of and around static kinks behave. This will be done in the
next Section.

In order to prepare the grounds, however, we first give a brief recapitulation of the
method used to derive the above mentioned exact solutions.
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In close analogy with the Ansatz of Lamb [3] we try to find a solution of the sine-
-Gordon equation
& ~D, = sin P(x,1) (1.1)
in the form

&(x, ) = 4 tan" [F(X)G(D)].- (1.2)

On substitution into (1.1) this gives the following third order polynomial equation
in F:

[G’—G’G"+2(}(G’)2]F3+G3F”F2—[263(F’)2+G+G"]F+GF" = 0, (1.3)
where the primes indicate differentiation with respect to x or # On dividing this equation
by G, differentiating with respect to ¢ and dividing by F, we obtain a second order polyno-
mial equation in F:

[GZ_GG//+2(GI)2]lF2+(G2)/F/:F__[2(62)/(F1)2+(G11/G)1] = 0. (14)

In order for these equations to have a common root, the coefficients must satisfy a certain
condition, first derived by Sylvester [4]. This could be used to obtain differential equations
for F(x) and G(t) separately.

Instead we differentiate Eq. (1.4) with respect to x and divide by (¥2)'(G?)'. This gives
an equation in separated form, from which we obtain after integration ’

FF' = —p'F*4+2(F')* =24 (1.5a)
and
GG = (1-p)G* +2(G') + 2K, (1.5b)
in which g’ is a separation constant and 1 and « are integration constants. Substitution
of these expressions for F'’ and G'' into Eq. (1.3) again leads to an equation in separated
form, from which we find

(F')} = —kF*+uF?+ 1 (1.6a)
and
(G = —AG*+(u—1)G* +x. (1.6b)

‘The constants x and u’ must be equal in order for Egs. (1.5) and (1.6) to be consistent.
We have given the details of the derivation of Eq. (1.6) because the method is rather
general and was used to answer the question whether solutions of the form of Eq. (1.2)
exist, but with the factor 4 replaced by some other power of 2. For 2, 8 and 16 the answer
is negative, whereas for other factors it is unknown. Also in the theory of surfaces with
constant negative curvature {5] only the factor 4 plays a role.
Introducing scaling parameters (as in Ref. {I]) through the equations

u=p8x T=wt Af(u)=Fx) g =GO 1.7
Eqgs. (1.6) take the same form as in Ref. [2]
() = =k [B))f*+(ulB)f* +(A]B*4%), (1.8a)

(8)? = —(Ho"g* +((u~D)/w’)g” +Klw’. (1.8b)
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They are solved by Jacobi elliptic functions with variables # and 7 and moduli &k, and
k, respectively. Since we are interested only in standing waves with N kinks, i.e., with

&(0,1) = 0 and &(L, t) = 22N, we must identify the functions f(x) and g(r) with f{u)
= sc{(u, k;) and g(z) = dn (7, k,). These functions satisfy [6]

2
[‘—;—Ii‘- sc (u, kf)] =(1— k,z-)_sc“(u) +(2—- k})scz(u) +1 (1.9a)
and
2
[(%_ dn (1, kg)] = —dn*(0)+(2—K)dn*(x)~(1—k}). (1.9b)

Comparison of the coefficients of Eqgs. (1.8) and (1.9) gives six relations between the eight
parameters k, i, 4, 4, B, v, kg, k,. Another relation is obtained from the boundary condi-
tion at x = L. Since sc (, k) varies from 0 to +oo over u-intervals of length K(k,), the

1539
=1
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X
Fig. 1. D(x, 1) = 4 tan~* [4 sc(Bx, k) dn(wz, k,)] for five values of ¢, covering half a period. N = 3,L = 1§
A =09

complete elliptic integral of the first kind, #(x, f) increases by 2n over the corresponding
x-interval. For N kinks there is therefore the additional condition L = NK(k,). So, for
given values of L and N there is just one free parameter which controlls the amplitude of the
N-kink solution. An example is given in Fig. 1, from which it is clearly seen that consecutive
kinks are oscillating with opposite phase. Solutions with other phases, although with
small amplitudes, will be constructed in the next Section.
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Fig. 2. The static solution Eq. (1.10) for N=3 and L = 15

For k, = 1 one has dn(z, k;) = 1, so that we obtain a static N-kink solution in the
form

d(x) = 6(x) = 4 tan™ '[Asc(Bx, k)], (1.10)

where now, for given L and N, the parameters 4, p and k are uniquely determined by
A2 =k, B=(1-k')?, k*+k'* =1 and BL = NK(k).

This static solution, which is unique and has N equidistant kinks, wil be used as
a starting point in the next Section. For N = 3 and L = 15'it is shown in Fig. 2.

2. Perturbation theory
In this Section we will construct solutions of Eq. (1.1), which are of the form

#(x, 1) = 6(x) +p(x) cos (1), (2.1)

' d*o
with u(x) small compared to the static solution A(x). This 6(x) satisfies i sin 6(x),
X

or after one integration

(ﬁ) = 2[en(L)—cos 0(x)], 22)
dx

do
where the integration constant cy(L) = 1+ % (&x_) can be obtained from the explicit
x=0
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soluton (1.10), with the result
en(L) = 1+8B%4%. 2.3)

For very large L this cy(L) approaches one.
Substitution of the form (2.1) for @(x, t) into (1.1) and neglecting higher powers
of p(x), leads to

_ d’p(x)
d 2

+cos B(x)p(x) = o p(x). 2.4

This is the Schrédinger equation for a particle in the potential ¥(x) = cos 6(x),
with boundary conditions 9(0) = w(L) = 0. For most x this potential is not very much
different from unity, except near each of the N kinks, where 6(x) makes a full turn of 2x.
We therefore expect to find N eigenfunctions which are localized around the positions
of the kinks, whereas all other eigenfunctions will have a wavelike character. We will call
them bound states and phonon states respectively. :

Since the equation (2.4) for w(x) is linear we can form linear combinations of the
eigenfunctions and describe arbitrary, but small distortions of the static N-kink state.

In order to find the eigenfrequencies w;, we have to solve Eq. (2.4) numerically. This,
however, is greatly facilitated by the fact that the static N-kink solution #(x) is monoton-
ically increasing with x. We can therefore use 6 as independent variable. In doing so Eq. (2.4)
is replaced by

2

2[en(L)—cos 6(x)] Z f;f

d B
tsin 0 7% —cos 0y(0) = — *p(B). (2.5)

This is again an eigenvalue problem, now with boundary conditions y(@ = 0)
= p(@ = 2rnN) = 0, but without the occurrence of the complicated function 6(x) of Eq.
(1.10). All dependence on L and N is in the number cy(L), which can be calculated easily,
and in the boundary conditions.

If we label the eigenfunctions y,(6) with the number of nodes in the interval 0 < @
<2nN, the corresponding eigenfrequencies o, will increase with n. We expect
Yo, Y1, ---» Yy—1 to be localized (bound) states and v, phonon states when n > N.

Among all these states py_ ;(6) plays a special role, because it can be given in closed
form. It is easily verified that this function and the corresponding eigenvalue are given by

wy_1(0) =sint 8 and i ; =3 [ep(L)—1] = 4p%4% (2.6)

It has indeed N—1 nodes in the interval (0, 2zN). For fixed N and large L the first
N states become degenerate. In this case cy(L) = 1 and from Eq. (2.6) it then follows that
w, = 0 for n < N. The other (phonon) states, if they really are not localized, should for
L = o feel a potential cos 6(x), which is practically everywhere equal to one. Therefore

lim w, = 1 should hold for all n > N.
L=yoo
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Fig. 3. Frequency shift for N = 2 versus 1/L
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Fig. 4. All bound states y,(0) for N=3 and L = 15
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By numerical calculation this behaviour was verified indeed, as can be seen from Fig. 3,
where we have plotted the difference w,—®? as a function of 1/L. The numbers 0 = (n
+ )n/L are the frequencies of the free modes J(x) = sin (n+ 1)nx/L, which are the solu-
tions of the Schrodinger equation (2.4), when the potential V(x) = cos 6(x) is replaced
by zero. This is a good approximation for small L, since in that case the effect of gravity
can be neglected.
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Fig. 5. Some phonon states y,(6) for N=3 and L = 15

The highest bound state yy.(6) is special in another respect too, because it is also
obtained when the exact solution

$(x, ) = 4tan™'[4 sc (Bx, k) dn (ot, k,)], 2.7

found in the introduction, is expanded in powers of k,, taking into account that for fixed
L and N, the other parameters are functions of this k,. For k, = 0 the static solution 6(x)
is recovered, while the next nonvanishing term turns out to be proportional to sin 3 6(x).
The exact solutions corresponding to the approximation @(x, ) = 8(x)+ y,(x) cos w?
for n # N—1 are not known.

The character of the oscillatory kink modes is illustrated in Fig. 4, where for L = 15
and N = 3 we have plotted y,(0) for n = 0, 1, 2. Notice that y,(6) is indeed equal to sin 1 .

For n = N the solutions y,(x) have the appearance of (standing) phonon modes being
scattered by N static kinks, which themselves are not influenced by this interaction. Fig. 5
shows y,(0) for n = 3,4,5 and L = 15 and N = 3.
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3. Conclusions

In this paper we have shown how a small perturbation of the static N-kink solution
of the sine-Gordon equation on a finite line propagates in time.

The prescription for its calculation is very much the same as for the propagation
of a Schrodinger wave packet moving in a potential.

The initial disturbance is first written as a linear superposition of the functions y,(x),
constructed in the previous Section. Then each of them is multiplied by the corresponding
factor cos w,t, after which a resummation produces the state at any later time.

The first N terms in the series describe how energy is transferred to collective motion
of the kinks, whereas the remaining part can be interpreted as elastic phonon scattering,
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