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ONE-PHOTON EXCHANGE QUASIPOTENTIALS OF TWO-BODY
SYSTEMS
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In the covariant single-time approach to the quantum field theory the expressions of
the one-photon exchange quasipotentials (the kernels of three-dimensional integral equations
for the relativistic wave functions) of two-body systems are obtained. The systems of particles
with spins (1/2, 1/2), (1/2, 0) and (0, 0) are considered. In the calculations the double-time
Green’s functions are used. It is shown that the obtained quasipotentials coincide with the
corresponding Feynman amplitudes on the energy-shell.

PACS numbers: 11.10.Qr

The covariant single-time approach to the quantum field theory [1-3] was successfully
applied to investigation of the static characteristics of bound states (mass-spectra, magnetic
moments of hadrons, etc.) and to the description of elastic and deep-inelastic scattering
of compound particles (see, for example, [4, 5]). The basic object of this approach is the
covariantly determined single-time wave function of a bound state [6] which has certain
advantages over the Bethe-Salpeter wave function [7, 8]. The single-time wave function
has the probabilistic interpretation and it is found as a solution of a three-dimensional
integral equation [2, 3]. These advantages are consequences of the elimination of relative
time which has no physical meahing. The role of the principle of causality in the problem
of single-time reduction in the quantum field theory has been shown in Refs. [9, 10].

The kernel of a three-dimensional integral equation, the quasipotential, depends
on the total energy of the system as a parameter. The procedure of its construction based
on the Green’s function has been formulated in Ref. [2]. It has been shown in [11] that
the quasipotential can be constructed by using the retarded part of Green’s function.
However, as a rule, the determination of the quasipotential by an other methos [12] based
on the physical scattering amplitude was used. The complementary determinations are
required here because the amplitude is known only on the energy-shell, while the equation
for the wave function is used outside the energy-shell. The quasipotential of a system of
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two scalar particles interacting by the one-spinless-boson exchange was found in [13].
The authors of the paper [13] applied the covariant double-time Green function for this
purpose. Subsequently analogous questions were considered in Refs. [14-16].

In the present paper the one-photon” exchange quasipotentials for two-body systems
are found by the Green’s function method. A system of two spinor particles, a system
of two scalar particles and a system of spinor and scalar particles are considered. The
calculations are performed in the a-gauge.

The covariant single-time wave function of a two-body system is taken in the following
form [2, 6]

Qu)*8(P— K)¥x(plA) = [ exp (ip,x, +ip,x)0(3x, — ix;)
X <0‘q'1(x1)q’z(x2) iP,,)d-“xld“xz. (1)

In this formula ¥,(x,), ¥,(x,) are the Heisenberg operators of interacting fields,
|P,> is a vector from the complete set describing the bound state with the 4momentum
P, and mass M,, and besides Pi = P,f + M2, nare all other quantum numbers. The time-like
unit vector A4,(4* = 23— 2% = 1) characterizes the system in which the times of particles
1 and 2 are equated, as a'rule, 4, = P,,/\/}—’f. Here the total and relative momenta are
introduced:

P=pi+ps; P =np—np; P} =M} (2)
and
_ MI+mi-m] _ MJi—mi+m}
"1 - 2Mf > ’72 — 2M: s

where m, and m, are the masses of particles 1 and 2.
The Lorentz transformation laws for the spinor operators and for the state vectors
allows us to establish the following property of the wave function [6]:

Yo(plh) = Si(L,)S(L)¥e(pld).

Here S(L,), i = 1,2 are the boost matrices which for the scalar. and spinor fields
are of the forms, respectively,

S =15 S(Ly = \/“’; ! [f* ’:) +1],
0

where & are the Dirac matrices. The vectors with zero on their top result from the Lorentz
transformation L!:

A=L%=(1,0); p=1L;'p.

T_he covariant double-time Green’s function of particles 1 and 2 has, by analogy
with [2], the form

(2")45(P—K)G(P; p, kli) = feXP (ipyx,+ipyx;—ikyy,—ik,y;)
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X OITY (x,)¥2(x2) P2(y2) P1(yy) 10D
X 8(Axy — Ax2)8(Ay, — Ay )d*x d*x,d*y,d%y . (3)

The momenta K and k are expressed through &, and k,, in analogy with (2). The Lorentz
transformation law for (3) is

G(P; p, ki4) = S((L)S,(LYG(P; p, kiHST M(L)S3 (LY.

For the function G one can obtain the spectral representation [2, 6):

G(P; p,k13) = G(P; b, k) = Gy P: b, K)+Goo(B; p, K), @)
5 s e PP Y3(K) ’
Gret(P;pa k) = Z e :4,2—'—-—:2"". + ... (5)

Po—VP*+M2+i0

The wave function ¥3(p) in formula (5) has, in accordance with (1), the following form:
¥i(p) = ¥5(BlD) = [ CO1¥1(n, ) ¥, (~m,3)IP) exp (ipE)dx. (6)
To obtain the quasipotential equation for spin particles, the wave function (6) and the
Green function (4) must be projected on the positive-frequency subspace [6} with the help
of spinors u(f),,z), u(l}l,z), where in accordance with (2)
P =mP+p;  p, =n,P-p;
kl == nlii4—k; kz = "zji"k.

The spinor are normalized by the condition e (p) ¥'(p) = 6. For the system of spinor
and scalar particles the projection is realized in the form:

o _ o + o °
Xg(p) = u(p)¥E(P), )
~ ° s @ + ° ~ © o o e
G7(P; p, k) = u’(p,)G(P; p, k)u'(k,).
For a system of two spinor particles the projection is defined as

g102

a '*‘0.1 ° +61 ° °
Xp (p) = u”(pIu"(p)¥2(p),
Seda . 0 2 PP P - ° 2. . ® rasl
G (P; p, k) = u”'(p)u(p,)G(P; p, k)u (ku"(ky). (8)

For a system of two scalar particles there is no projection operation. However, for the
notation being general we put Xz(p) = ¥ (p).
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The quasipotential of a two-body system can be expressed in terms of the total (causal)
Green’s function and its retarded part as follows:

V = é&i—é_‘; Ve = ol —Grals G = iGl(2m)?;
and in the second order of perturbation theory
V= G(_OI)GAU)GA(_O;? Viee = G"(I,},C,GA(Z),,,GA{O;M. &)
The functions Xg, introduced in formulae (7) and (8) satisfy the equation
[Coy—V1* X5 =0; [Gighe—Vil* Xz =0. (10)

The symbol (*) means the integration over the three-dimensional momentum.

Explicit expressions of free double-time Green’s functions can be easily obtained.
So in each case we consider, we have the relation (here and later on zero over the vectors
P, p, k is omitted)

GoP; p, k) = i(2n)*Gol(P; P)S(p— k).
For a system of particles with spins (1/2,0) and (1/2, 1/2) we obtain, respectively, )

4

GiowPip) = 5o Ryt Gistiu(P5 p) = R,8716% (11)
2
and for a system of spinless particles
A Ay, . R
Gof(P;P) = 225 GopelP;p) = — —2—. 12
XP; Pp) dotan el P; P) dot? (12)

In formulae (11) and (12) the following notation

o} = \/lp,2~+mf, j=1,2;
R, = (Po—0f—w}+i0)""; A4, = (Py+of+wi—i0)~"

is used.

It is to be noted that the projected functions (11) coincide with the retarded functions
for the same systems. It follows from the explicit expression of R,.

Now let’s find the explicit form of quasipotentials for considered systems. The double-
-time Green’s functions G, their inverse functions and, consequently, the quasipotential
will be found by perturbation theory. The translational invariance allows us to write down
the momentum representation of the 4-time Green’s function in the form

G(P, p; K, k) = (2n)*8(P— K)G(P; p, k).
The double-time function G(P; ». k) is expressed through the function G(P; p, k) in the
following way [2, 6]

~ 1
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The Lagrangians of interaction of spinor and scalar fields with the electromagnetic
field are, respectively, of the forms

Zi(x) = g: P(x)y,¥(x): A"(x),
Z\(x) = ig: ¥ (x)0,¥(x)— P(x)0, P (x): A*(x)
+ 8% ¥ () P(x)A(x) A" (x):.

In the second order of perturbation theory for the 4-time Green's functions of considered
systems we have

G(z)(P; p, k) = Dl('l1P+P)FTD(ﬂlP*"k)Duv(P"k)
X Dy(n,P— p)['3D,5(n, P —k), (14)

where D(p) are the propagators of spinor and scalar fields

13+mj
D. = . —r—-—«»—--—; D = ey 15
0= g P = e (15)
and I'§ are the vertex factors

e =75 TIf{=Q@nP+p+k); Ty =QnP—p—k). (16)

We have chosen the photon propagator in the a-gauge:

1 4,4,

D (@) = —5—| g+ (x—1) S~ . 17

Consider the case of two spinor particles. Using formulae (14)-(17) and the technique
of contour integration, we find the foliowing expression for the double-time Green’s
function from (13):

G35e(P3 B, ) = —(2m) 8, 82R,RE (P )Y U (k)
XU p, )y u(ks) (8 C(P; p, k) +(a—1)g,08v0B(P; p, k)],
where
C(P; p, k) = W)™ '(Ry2+R2y),
B(P; p, k) = R, 'R; "(4W>) ' [W(R},+R3)—R;,— Ry +R,+R],
g, and g, are the charges of particles 1 and 2. Here a further notation is introduced:
W=lp—kl, Q;=of+d;+W,

Rij = (PO—QU%-!'O)—I.
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By the definition (9), we find the quasipotential
VEP; p k) = Ry 'Ry "G (P p ), (18)

and now we can write the quasipotential equation (10) for a bound state of two spinor
particles explicitly:

R; ' X3 (p) = —(Q2n) g8, | dka®(p,)y"u" (k) x d7(p,)y"u"*(k,)
% [8,C(P; p, k) +(a—1)g,08,0B(P; p, k)] Xp (k). (18a)

The analogous procedure allows us to get the expression of double-time Green’s
function for system of spinor and scalar particles in the second order of perturbation theory:

GA:Z)r(P; p, k) = (2n) g, 2,(8Wahw’) ™ 'u(p )y u'(k,)
x [Cu(P; p, &) +(a—1)B,(P; p, K)].
Here the following notation is used .
CAP;p, k) = Rkaz[R f“"(p, k)+€Q;, f( X(=p, K] +(p k),
B,(P; p, k)'= RR ;W) R,/ (p, k) _[5vq~uR12
+Q@W) NG+ 97001+ 2% £ (—p. k)
x[4,Ri— D)+ @+ 3T+ o B,
TM(p, k) = (-0 F o, ptk),
¢ =W, k=p), ¢"=WW,p—k.

The expression in parentheses is the previous term with the shown substitution (p <> k).
In this case the quasipotential is expressed through G(z), by the relation

Van(P; p, k) = 40804 R, 'R Gy (P; p, K). (19)

The equation for the relativistic wave function of a system of scalar and spinor particles
has the form

208(Po— ] —wH)X3(p) = (21) g, 8, [ dkQW) '@ (p )y uky)
x Ry 'Ry {[C,(P; p, k) +(x—1B,(P; p, ] X5(K). (19a)

For a system of two scalar particles interacting via the one-photon exchange, in accord-
ance with (13) and (14), we obtain the explicit form of functions G z),e; and G z)aqs Which
determine the function G,, by the formula (4)

GoyelP; P, k) = GayeePo> P; 1, K)
= g,8,(2n) (32w wiwiwiws) ' [C,(P; p, k) +(a—1)B(P; p, k)],
G(Z)adv(P;Ps k) = G(Z)adv(PO’ P;p, k) =»G(z)m(“‘Po, P;p, k),



where
Ci(Po, P; p, k) = [(@f — ) (@5 —0})—(p, +k,) (p2+K,)]
x(@f +wf + &} + b)) Q7 +Q3R,
~(Py+ky) (P2 +K3) (271 —R) (27 ~RpR
—[(0f — )21, — (] + w})R,] [(0} - )23,

+(@5+0)R, IR, +(p— k),

B,(Py,P;p, k) = ZWTW-Z(ngp’“ngtz +ngsz)+(P“"k)-

Now it is not difficult to get the quasipotentials from (9):

Vo) (P; p, k) = £18:2m) T *[8W (0] + @) (o} +m’5)RkaApAk]- !

x{C(Po, P; P, k)+C,(—Po, P; p, k) +(a—1) [ B;(Po, P; p, k)
+B(—Po, P; p, K)]},
Vayed P p, k) = 8,8:210) QWR,R) ™!
x[Cy(Po, P; p, k)+(a~—1)B,(Po, P; p, k)],
and the corresponding equations from (10), (12), (20) and (21)
dofwi[(@f +w5)’ — P51 Xp(P) = g,8,(2n) > | dk
x [4W (&} + w§)R, R A,4,] '{C\(Po, P; p, k)+ Cy(— Py, P; p, k)
+(a—1) [B(Po, P; p, k)+B,(— Py, P; p, K)]} Xp(k),
dofol(of +0f — Po)Xp(p) = £2,8:2m) 7> [ dk(QWR,Ry) ™"
x [Cy(Po, P; p, k) +(x—1)B(Py, P; p, k)] Xp(k).
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(20)

(21

(20a)

(21a)

It is necessary to note that equations (18a)«(21a) belong to the spectral problems, and
what is more, the spectral parameter P, (the energy of a two-body system) is present in
the left-hand sides of the equations and in the kernels too. At present the methods of
analytic and numerical solutions [17] of such equations are being actively elaborated.

The wave functions X7"(p), Xp(p) and X p(p) (the solutions of the equations obtained
in this paper) can be used for solving many problems of relativistic two-body bound

systems. In the general case, they are normalized by the condition [6]

1
e f dpdk Xp(p) \/~— [G(P; p, 0)]vFi=mn x Xp(k) = 2Mn.
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On the energy-shell when P, = wf+w} = o} +0} the quasipotentials (18) — (21)
coincide with the corresponding Feynman amplitudes:

(021):12r1(P;ps k)IPo=m1""+sz"‘ = '—glgz(zn)_3aa‘(p1)'y“u"(kl)

X @7 po)y, " (ky) [(0f — wh)* —(p—k)* +i0] "

1
_ 2 —Sﬁn nun k)% 1)) r2 k ;
818.(2m) (p)y*u"' (k) x @t (Pz))’,;u (k3) q2+i0

. 3w vy (P2 ko)
Vol Ps Py K pymapis s = —g182(20) 5 p )y, (ks ~;2-+;) ;

VayP; p, k)|P0=(01P"‘+wz"" = —glg2(27[)_3(p1 +k1)”(1’2+k2)" —“ZL.*' .
. q°+i0
Here the 4-momenta p,, p;, k,, k, belong to the mass-shell and ¢ = k,—p, is the transfer
momentum. Therefore, these quasipotentials can be used like the off-energy-shell ampli-
tudes in the three-body problem of quantum field theory.
The generalization of these methods to the nonabelian gauge theories will be published
separately.

The authors express their gratitude to Dr. N. B. Skachkov and Dr. S. I. Timoshin
for valuable discussions.
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