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We discuss the possibilities of extraction of the “square root” of the Dirac equation
within N-extended supersymmetry for construction of the more fundamental dynamical
theory. The “square roet” of the Dirac operator can be defined in N-extended superspace
for N < 2, but it is imposible, in the framework of the standard demands to the field theory,
to build a new dynamical model with it.

PACS numbers: 11.30.PB

It is notorious that the original Dirac’s method, by which he derived his famous
equation for the electron wave function, is based on the idea of factorization of the Klein-
-Gordon equation [1]. As a result, a new dynamical first-order equation is obtained from
the dynamical second-order equation. The obtained equation is more fundamental in the
sense that any wave function, which satisfies the (free) Dirac equation, automatically
satisfies the (free) Klein-Gordon equation.

The remarkable simplicity and refinement of the Dirac’s method are stimulating
further attempts to extract a ““square root”, this time just of the Dirac equation. In partic-
ular, in a recent work [2] it was proposed to build a new theory by extraction of the “square
root” of the Dirac equation in superspace of simple supersymmetry.

In this work we generalize a consideration of [2] to the case of N = 2 extended super-
symmetry. It is amusing that analogous generalization to the case with N > 2 apparently
does not exist. In N = 2 extended superspace, just as in N = | superspace, there exists
an operator A built of covariant derivatives with dimension 1/2 (in units of mass), which
can be constdered as a ‘“‘square root” of the Dirac operator D. However, the use of this
operator A for obtaining free field equations leads only to constraints which do not carry
dynamical information. The interpretation of the operator 4 as of an auxiliary one, when
used for writing down the dynamical system of equations for (free) superfields in the
first-order formalism, in fact returns us back to the Dirac equation for superfields. Such
“horizontal” supersymmetrization of the Dirac equation ﬁy:(x) = 0 by naive replacement
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of the space-time argument x* by a total set of coordinates of (extended) superspace
M = («*, 62, 82) is noncanonical and incompatible with usual principles of field theory
construction, which displays itself, for instance, in appearance of unphysical states and in
violation of ordinary spin-statistics connection. The proper supersymmetrization is “verti-
cal”, i.e. the spinor field ¢(x) is included in a supermultiplet with other fields, for example
scalar fields, equations of motion of which are the second-order Klein-Gordon ones,
whereas equations of motion for y(x) (Dirac equations) are the first-order ones [3]. The
rest of the papér is devoted to expounding of details.

Let us consider an N-extended Poincaré superalgebra in four-dimensional space-time,
which is defined by the following (anti) commutation relations [4] (the commutators
with Lorentz generators are omitted):

{05 04} = {Cai, 045} = O,
{00 055} = 28j0L,P,.
[0 B.] = (6)i0% [Qais B] = —0:(b,)},
(Pw B] = [P, Q] = [P,. 3a] =0,
[Pw. P.] =0,
(B.. B.] = ici,B,. (1

The initial letters of Greek alphabet are everywhere used for designation of spinor
indices (¢ = 1, 2; & = 1, 2), the letters from the middle of Greek alphabet — for vector
indices (u = 0, 1, 2, 3), the letters from the middle of Latin alphabet — for indices of
internal symmetry U(N) (i = 1, 2, ..., N).

The B, are Hermitian generators of internal symmetry U(N) with structure constants
¢},. The rule of Hermitian conjugation for spinor charges Q reads

Q)" = Qur 2)

Thus, if @' transform in some (usually fundamental) representation of U(N), then
Q; transform in complex conjugated representation. Note, that the fundamental repre-
sentation of U(N) is real only for ¥ < 2.

Supersymmetry is a ‘““square root” of space-time Poincaré symmetry in the sense of (1).
So it is natural to construct such a linear operator A of dimension 1/2, which would be
a “square root” of the Dirac operator (of dimension 1) in extended superspace with co-
ordinates z™ = (x*, 0%, 3%). _

In the two-component formalism used here for spinors the (free) Dirac equation is

given by
A X
("’ O m )("’) =D ('Z’) =0. 3
m m‘&a,, i ¥
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Now let us demand a total set z¥ of coordinates of N-extended superspace be an
argument of wave functions ¢ and y (“horizontal” supersymmetrization). However, the
operator D in no way affects the anticommuting coordinates of superspace. At the same
time in the superspace there exist derivatives with lower dimension. That are just the weli-
-know spinor covariant derivatives [4] which satisfy an algebra

{D: D§} = {Dii» D} = 0,
{Dz, Dj;} = 2850%;i0, @
and admit the following realization in superspace:

0 i

Di=— — —g¢*0%), 5
— d i apy
i = W - EG’ eﬁiaﬂ.
In N = | superspace a suitable operator 4 is known to exist [2]:
1 D= D" 1l (D*-D;
A = = = y * = = = * .
als. 5) =57 ©
Hence
G4 M '
AAT = ("7 % M
4 (M(l) ia:;au) ' o

where a Hermitian operator M,
M(l) = %(ﬁaﬁé'{'l)al)a) (8)

plays the role of mass when acting on chiral superficld, M(z,) = p"p,.

The attempts to construct an analogous operator 'in N-extended superspace find
difficulties, because D' and D; transform in unequivalent representations for N > 3.
For N = 2 it is possible to raise and lower indices of internal symmetry by means of anti-
symmetrical invariant metric ;, €7, so that [5]

(D)* =Dy, (DY = —D*. ©)

The sought for operator in N = 2 superspace has a form

D pv -D -Di
A=71 , A+ = 4 _,‘- z]. 10
: (Du 5«':) 2( D; DL) o
Consequently,
i3, M}
At =('% % m), 1
(M(z)u w':&a,, ( )
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where the role of mass is played by an operator
M, = XD D%+ D" D))
= 1(DY+ D, (12)

Having obtained a linear differential operator A, it is natural to consider a “new”
set of linear equations:

AB=0 or A'F=0 (13)

In N = 1 superspace the superfields B and F have the form {2]

_(? — (Y-
=) ()

therefore (3) can be displayed as follows [2]:
D'¢+DVi=0, —D,@+D;Vi=0, (152)
D*y,—D;* =0, Dy +Di* = 0. (15b)

There are several possibilities to choose B in N = 2 superspace
?, @, &, .
Bl MR K B, = a | B3 = « (16)
Vl]ﬂ V2a Vsaj

and, accordingly, F
Fy = ('.‘.f,) F, = ("’2“), F; = ("’J) (17)
Kyij /) %5 K3i

A replacement 4 <> A+ does not bring anything essentially new. When constructmg the
equations, a minimal number of spinor indices in the formulae (14)— —(17) ‘was used.
At first sight the equations (13) look more fundamental, than Dirac equation, because
if, for example, F satisfies (13), thén
DF = AAF =0, (18)
thinking that M assumes one if its eigenvalues. It is not difficult to write down a suitable
action in N = 1 superspace

Sy = — [d*xd*0[F*AB+h.c.] (19a)
or in N = 2 superspace

S; = — [d*xd®0[F"AB+h.c.] ¢19b)

]

and even introduce a gauge interaction in supersymmetrical way by means of further
covariantization of covariant derivatives with respect to N = 1 or N = 2 Yang-Mills



467

coupling

DY - DP = P +id®, D% — D* = DY, —idk, (20)

taking account of a standard set of constraints on anticommutators of gauge-covariant
derivatives in superspace [6, 7).

However, the equations (13) are, in fact, only constrainst, which express some com-
ponents of the field through others and they do not lead to dynamical equations of motion.
We have verified this statement by writting out explicitly the superfield equations (15)
in components and solving the arising linear dependencies. We do not give the proof
here, because it is extremely cumbersome and elementary. Analogous statement takes
place for N = 2.

One can obtain a dynamical equation connecting, for instance, the fields B and F.
On the grounds of dimensional considerations, the only version of such a connection
is given by

B =A"F, 21
which corresponds to Lagrangian density in superspace
= —(F'AB+h.c.)+B"B. (22)
The theory (22), as a matter of fact, is writing down of a theory with
L= —F*"(AA")F (23)

in the first-order formalism, which returns us to “horizontal” supersymmetrization of the
Dirac equation.

The summary of our discussion consists in conclusion that there are possible only
two supersymmetrizations of the Dirac equation: “horizontal” (supersymmetrization
of coordinates) and “‘vertical” (supersymmetrization of fields), or both of them together.
One can realize the latter on graded supermanifolds considered recently in [8]. The use of
“horizontal” supersymmetrization is always accompanied by an appearance of numerous
“superfluous” fields with noncanonical dimensions and ghosts, which considerably hamper
the use of such theories for physical applications.
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