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The possibility of the existence of magnetically bound positronium states (superposi-
tronium) is investigated starting from the two body Bethe-Salpeter equation. For the total
angular momentum j = 0 quasi bound energy states are found in form of resonances of the
cross-section calculated with the use of the phase of the scattering states. The energies are in
agreement with the observed kinetic energy of the disintegration electrons or positrons in the
heavy ion collision experiments, From the width of the resonances the life-time of the quasi-
-bound states can be estimated. Really bound superpositronium states could not be found.

PACS numbers: 12.20.Ds

1. Introduction

Following A. O. Barut’s idea [1] of the existence of magnetically bound particle-
-states with respect to elementary particle physics we have investigated the simplest system
of this+kind, namely the very narrow ete~-pair (superpositronium). On the other hand
such considerations are specially interesting in view of the recent observations [2] of narrow
coincident electron-positron lines from heavy-ion collisions at GSI. The experimental results
point to the possibility, that the observed electrons and positrons can be interpreted as
the relic of the decay of magnetically quasi-bound ete—-states. In this connection we can
show until now, that starting from the relativistic two body Bethe-Salpeter theory in case
of the quantum number j = 0 quasi-bound superpositronium states do exist; the energies
for the desintegration electrons and positrons lie in the range up to 500 keV in good agree-
ment with the last GSI-experiments [2, 3]. This result is so much the more of interest, as the
observed lines cannot be understood by spontaneous pair production in supercritical fields
[4]. For the life-time of the magnetically qudsi-bound states we find approximately 10-2° sec
in accordance with the observed width of the electron-positron lines. On the other hand
really bound superpositronium states do not exist.

Of course, there are already other attempts for explaining strongly bound e*e--pairs
[5, 6]; but these papers do not start from the unique Bethe-Salpeter equation but from
more or less ad hoc constructed models.
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2. The relativistic 2-body problem

From the two-time Bethe-Salpeter equation for a system of two spin 1/2-particles
one gets the following “one-time Salpeter equation™ [7] in the center of mass system
h=1c=1)

[E—@Wp+BPmD)—(—a®p+pPm®) ~ TGV P]p( = 0. @2.1)

(E is the energy eigenvalue after separation of time), where for the ete~-pair the potential

V(r) takes the form
2

- e
V() = — 7(1—8) (2.1a)
with
ey (FAD) (A
B = %[a‘”a(”+ ( _)._.g_)] , (2.1b)
r

which includes the lowest-order retardation. Herein

r=rV_¥ p=—_ 2.2)
i oOr

are the relative coordinates and their momentum operator respectively, whereas the projec-
tion operator

e =1%

(l)"+ﬂ(l) 1) _&(2)’p’+ﬁ(2)m(2)) 23

VP2 +mM? VP +m®?

will be approximated in the following by the 16 x 16 unit matrix. By this procedure equation
(2.1) goes over into the Breit equation [8] which is useful as long as the energy between the
two Dirac-particles remains small compared with their rest energy. Especially it contains
the spin-orbit interaction which is of great importance for the magnetic interaction-of ete—-
-pairs. The Dirac-matrices are given by the 16x 16 matrices

MN=06,00, 0101, =1Q06, @ @1
=0 @11 Do, =0, D0:D1 Doy,
MN=0, 00,0101, =106 ®l1,
BV=06,®0,®1Q®0;, fP=1Q0,®0,®1, (2.4)

wherein o; and 1 are the Pauli-matrices and the 2x 2 unit-matrix respectively. ,

With regard to the centrally symmetric ete--potential we use in (2.1) furthermore
polar coordinates and separate the angular variables. In this way it follows for the 16 compo-
nents of the radial wave function y(r), cf. [9]}:

d  1+% (@ af”+af af?
+i(s"—a) (- +
[ (3703 |

r
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1 (2)
1 _ ) B \/J(J+)

—i(ei’ — (ﬂ(l)+ﬂ(2))

+ = (1=} [0+ a0 + 20 <2’])] w(r) = 0. (2.5)
r

Herein a is Sommerfeld’s fine structure constant, m = m™ = m® is the mass of the electron
or the positron and j = 0, 1, 2, ... are the quantum numbers of the square of the total
angular momentum. In consequence of the representation (2.4) the differential equation
(2.5) can be splitted into two independent subsystems of 8 equations, from which 4 are
differential equations and 4 algebraic ones. The first system reads (dfldr = f')

, (v A
G5 +%(E+ 7>f3‘" =0,

L2 3¢ iviG+D
f§.’+7/§ )— A*’—%<E+ 7)&‘“——— g7 =0,

r

1 2a NG+
o+ 7g<3 ma$ >_;(E+ 7) g(’+)"—;~f£ ) = 0, (2.6a)
and

mf2(+)+%-<E—, %—)fl‘“ =0,

VIGHD 0y _
r 2 = U

1 —
TEg{—

mgt+3EgV =0 : (2.6b)

with the following combinations of the components of the spinor y:

1
fl(+ \/—('1’9 Y1i4)s f2(+)=:/"§('P12"P15),

e ?/—2(1/’9'4"/’14), )= 75('#‘12""/’15)
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(+)

(+) _
81

\/2 (wi1—vi6)» &2

1
(-) (-)
83 —('P11+'P16) 8s ' = —= (Yio+¥13)-
-7 e

The second system of 8 equations has the form

’ a
157 =+ (24 £) 150 <o,
. r

, 2 3\ . ivjG+D)
757 2= (e 2) - DIOED g

oy b 2a
g+ — g ’—mg2+’+%<E+ 7) gs"” =0,

| 2a z¢1(1+1)
67+ o= (B4 Z) g0 D o

and

o iViG+D)
Y

r

-
r

i \/J(I+1)
mg§" —3 Eg¢"+

f()

Egi7 =0

with the combination of spinor-components:

i ’—:-/5(% ve), S~ ’———(% v1),

\/2

(+) _

(+) _
3

1
\Ti (vit+ye), fa \/2 (wa+v7)s

g &

1
=:/_§('P3"1P8), gz =\/ (v2—vs),

+ +
g ) — (+) _

\/2 —=(patvs), gy '\/2 (p2+ps).

\/2 (10— ¥13)

Q.7

(2.8a)

(2.8b)

(2.9)
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The sign (+), (=) refers to the intrinsic parity =, cf. [9]. Furthermore the components
/1 and f, belong to total spin s = 0, Whereas the other f’s and all g’s describe states with
s=1 [10}
Evidently from (2.8b) it follows:
=g =0 (2.10)

For solving the remaining 14 equations (2.6a, b) and (2.8a, b) we restrict ourselves in this
paper for simplicity to the cases j = O for which one gets from (2.6b):

=g =0 (2.11)

Furthermore the remaining 6 equations of each system .(2.6) and (2.8) decouple with respect
tof’s and g’s according to which all g’s vanish:

g =0. (2.12)

From the remaining 6 non-trivial variables f{*), f{*) for s = 0 and f{¥, f{*) for s = 1
the functions f{*’ and f{*? can be reduced via the algebraic relations (2.6b) and (2.8b)
to f3*) and f{*’ respectively:

0= 2,
a
— —~E
r

2m

iD= T——fs‘”, (2.13)
r

whereby the algebraic equations are satisfied simultaneously. Then with the help of (2.13)
one obtains from the differential equations (2.6a) and (2.8a) the following determination

equations for f§*’ and f{*):
+y 1(pe & £ =
2tz L+ S =

2m

)
A7+ A7+ f‘”——(E+ )f‘”-o (2.142)

-2

and

A7+ %—ﬁ”—%(E+ %“) ) = 0. (2.14b)
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The two independent systems (2.14a) and (2.14b) describe the e*e~-pair with j = 0 possessing
the angular momentum / = O and / = 1 but belonging to different total parity P = n(—1)".
The first one belongs to positive total parity, the second one to negative total parity, cf. [9].

In order to demonstrate this more in detail we analyze the system (2.14a) for the
interaction free case. Neglecting the terms «/r we obtain immediately:

S LLE T =0, (2.152)
.2 4m?
ALy >_.;.E(1_._E2_>f2<+> = 0. (2.15b)

By elimination of /§™? or £{*) in (2.15b) with the use of (2.15a) we find the radial differential
equations of second order (Schrédinger type):

.2 . E? 4m?
fz(” + 7f2(+) + "Z(l— 'E—[‘)fz(“ = 0,

Y , 2 2 2
w7 2= Lo 2 (- ) -0 @16

Evidently f{* (and because of (2.13) also f{*’) belongs to the angular momentum / = 0
and f{7) to I = 1. The differential equations (2.16) are valid too for f§~? and f{*?, respec-
tively, following from (2.14b) in the case of negative total parity.

Finally we note that Barut has derived relativistic two-body equations-from the action
principle in quantum electrodynamics avoiding the Bethe-Salpeter approach {11]. Then
one has instead of (2.1) the slightly modified wave equations

[E-@Vp+BYmD) = (—aPp+pPmP)—V([")]p() = 0 (2.17)
with

2
V@) = — S (=505, (2.17a)
r

These equations lead to expressions very similar to the differential equations (2.14a) and
(2.14b); we have proved that the results obtained from Barut’s equation are within the
error limit identical with those from (2.14a) and (2.14b).

3. The radial wave equation and effective potential

For discovering the energy states belongingto j=0(=1,s=1and /=0, s = 0)
with positive total parity, to which we restrict ourselves in this section, we have to solve
the differential equations for f*) and f{’, that means the system (2.14a), whereas the
second system (2.14b) is to be solved by f{™ = f{*) = 0. Then we get by the substitution

E=e¢em 3.1)
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d
from (2.14a) the simplified differential equations (’ = 2—):

x
, oo 14x
5+ > Tfa( ) =0, (3.2)
.2 o fx+3 4x
(=) S =y 2|20 (+) _ 0. 3

7+ xfs 2[ " +62(1—x)] 2 (3.3)

Furthermore from (2.13) it follows:

2 x
iV == —f" (4
g€ 1—x

For the following (numerical) calculations the pole at x = 1 in (3.3) and (3.4) is avoided
by the substitution

lim d(x, é) =
30 1—x

(3.5)

Later we choose ¢ very small and show, that the result does not depend sensitively on the
value of 4. In this way the singularity at x = 1 is regularized.

Now we decouple the differential equations (3.2) and (3.3) in such a way, that we
eliminate f{7 in (3.3) with the use of (3.2). By this procedure we obtain!

3+2x
x(1+x)

()" 4
2

—_— —( +1)[ 3+ = d(x, 5)};“(*)—-0 (3.6)

With the solution f§*? of equation (3.6) f{™) is given by (3.2) and f{*’ by (3.4). All other
spinorial wave-functions vanish. Then the particle number density takes the form using (2.7):

y = AP+ HIA7R G.7

! Without the substitutions (3.1) and (3.5) the differential equation (3.6) takes the physically more
transparent form, cf. (2.16):

e

PENEPOEN 2o m
r I“

)y +)
E+a/r E- o:/rf( + (E+% )fg

am? d
el e (-2)

No centrifugal potential appears; the third and the fourth term have magnetic origin, the fifth term contains
the Coulomb-potential plus correction. -« For the numerical calculations the form (3.6) is more suitable.

f(+)




484

For solving the differential equation (3.6) we bring it at first into the form of a 1-dimen-

sional Schrodinger equation. For this we set

=
=\/ +xF

3/2

LY

X
and get from (3.6)
F'—V(x)F+k*F =0
with (cf. (3.5)

V) = - =+ (1)
PESEE SRR S 2 1-x o’ 8
*(1+x? "ix+1 P x 2 (1-x)+8> & (1—-x)P*+6°
and (cf. (2.16))
a\? 4
E=(=)(1-5
() (-3)
hv
0 1 — X

Fig. 1. Qualitative course of the effective potential according to Eq. (3.10)

(3.8)

3.9

(3.92)

(3.9b)
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Equation (3.9a) represents the effective potential: The first term is the Coulomb-potential;
all the other terms describe the magnetic interaction. In view of (2.16) no real centrifugal
potential is present. However because a® and 42 are very small quantities the last term in
(3.9a) can be suppressed totally and in the second term a® can be neglected. In this way
for the effective potential it remains:

2 1 1
0= =5 4 (g )

e 1\ 2 1-x 310

\i+x x &2 (1—-x)*+6%" (3.10)

The shape of ¥(x) is shown in Fig. 1. Obviously the last magnetic interaction term in (3.10)

is very important in the neighbourhood of x = 1, i.e. according to (3.1) in the region
of the classical electron radius.

The quantity (3.9b) represents the energy without the rest energy; with ¢ = 2+¢
we get from (3.9b) for |¢] <2 in the first order

2
K2 = (%) : (3.11)

According to this bound states are characterized by k? < 0«»¢ < 0, scattering states
by k2 > 0«>e > 0.

4. Scattering states
4.1. Positive total parity

In view of the observed e*- and e-lines in the heavy ions experiments £ > 0 is valid
in this case. Therefore we investigate at first the scattering states for j = 0 and positive
total parity and deduce from these the cross-section for ete--scattering. In the case of reso-
nances in the cross-section we can be sure that there exist quasi-bound states of the ete~-pair
with the energy of the resonances.

At first we investigate the asymptotic behaviour of F according to (3.9) and (3.10).
For x - 0 we find

1
F'-35F=0 4.1)
x
with the 2 independent solutions:
-1/2
F= {im ’ “2)

But only in case of the second solution the spinorial wave function f§*) and herewith also
SE7) and {7 are finite at x = 0, see (3.8), (3.4) and (3.2). Therefore the first solution of
(4.2) must be exciuded.
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For x - o0 we get from (3.9) and (3.10)
F'4+k’F =0 4.3)
with the 2 independent solutions (k* > 0):
F(:!:) — e:tikx’ (4.4)

so that in view of (3.8) the wave function f§*) represents asymptotically an ingoing or
outgoing spherical wave. Hence we make for the total functions F,, the ansatz

Fyy = x*%e* %4 (x) (4.5)
with the boundary condition:
S0 = 1. (4.52)

From (3.9) and (4.5) it follows immediately
fooy = foo (4.5)

both relations (4.5a) and (4.5b) are obtained without restriction of generality.
* For stationary scattering states the total function F in (3.8) and (3.9) must be real
valued. Thus we have to set in view of (4.5) and (4.5b)

F =F (+)+F(—) = xalz(ﬁﬂ(x)em+ﬁt)(x)e_ikx), (406)

that means a superposition of outgoing and ingoing waves. Separating Ji+) in its real and
imaginary part

Jeny(x) = a(x)+ib(x) 4.7)
we obtain from (4.6):
| F = 2x>*(a cos kx— b sin kx). (4.8)
In view of (4.5a) and (4.7) we have the boundary condition for a and b:
a@® =1, b0)=0 (4.8a)

in agreement with the behaviour of (4.8) at x = 0, see (4.2).
It follows from (4.8) that

F = —2x*%a?+ b sin (kx—7y),

. a b
v T Jaie

In view of (4.4), (4.5) and (4.7) a(x) and b(x) will have the asymptotic behaviour

(4.9)

lim ‘;8} ~ X732 (4.92)
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so that sin y and cos y have asymptotic constant values. Herein y has the meaning of the
scattering phase with respect to a free (plane) wave, cf. (2.16).

With the solution (4.9) the non-vanishing wave functions are known. In view of (3.2),
(3.4) and (3.8) we have:

Jx+1
2(+) = —xal‘z—'F,

2 Jx+1  1-x

(+) . F
/i e xY? (1-x)*+8*
- 2 x .
= (4.10)

With the regularization procedure (3.5) all these functions are regular within the range
0 < x < . The asymptotic behaviour for x — oo takes with the use of (4.9) and (4.9a)
the form (up to the same, but irrelevant factor):

1
- — sin (kx—7),

2
AP - - < o sintkx=y),

() a1 L
i) - 1—8—2-;s1n kx-—y—?- (4.10a)

Taking into consideration, that according to (2.16) {* and f{*) belongto/ = 0 and f{~’ to
I = 1 the partial cross-section for j = 0 with positive total parity is given by the scattering
phase y as follows [12]

aers lim sin? y. (4.11)
In order to find the asymptotic value of y, we have to set F,, according to (4.5) into (3.9)
and to solve the differential equation for f ,(x), i.e. because of (4.7) for a(x) and b(x)
with the initial condition (4.8a) for different values of e. Then ¢ is obtained by the defini-
tions (4.9) as a function of the energy.

Doing this with the use of the potential (3.10) we neglect the Coulomb-potential
‘@?/x, because we are interested in the resonances of the cross-section only caused by the
magnetic interaction. Furthermore the last term in (3.10) is important only in the neigh-
bourhood of x = 1; inspite of this it would produce {as the Coulomb-potential) a logarith-

2 Because of the substitution (3.1) the wave-vector with respect to r reads %k = mZk.
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mic asymptotic behaviour of the scattering phase and destroy the property (4.9a). In order
to avoid this we damp it for large x-values by the factor e *~". In this way we obtain:

3 1 1 3ik
' - 2~k ’ — K] _3_ _ —
feo+ (x +a )f(” I}{(x+1)2 t2 (x+1 x) x

2¢% (1—x)e” ™~
_? (l_x)2+o'2 -f("‘)z

(4.12)

We solve this differential equation in 2 steps. Starting at x = 0 we expand f{,, in a power
series

fir) = z X" (4.122)

with the initial condition, because of (4.5a) or (4.8a),
¢ = 1. (4.12b)

The recurrence formula following from (4.12) and (4.12a) has the form neglecting the
damping factor e~ ¢~ 1):

A+8) (n+5) (n+Tepss = —[3+ikQRn+11)

+8*G+2(n+4) (n+6)+ikQ2n+11))]c, 4 4

) : 2o’ 23,1
+ | 7+2(n+3) (n+5)— = —-20(g+5(n+3)(n+95)
. 20? . w3 o2
+ik(2n+9)) | cpr3— | 5 —2ikQn+T7—30%) | Cys2
&

2 2
I:('H-l) (n+3)+3 - 2 ]c,,ﬂ-j- [2i ~zk(2n+3):| (4.12¢)
&

Starting from (4.12b) all coefficients ¢, can be calculated by (4.12c). However, because
of the asymptotic behaviour (4.9a) the series (4.12a) is not convergent for large x-values.
Therefore we go over at x = 10-2 to a numerical integration of (4.12), where the initial
values for f ., and f/,, are taken from the power series.

The result of the calculation is given in Fig. 2 where the cross-section according to
(4.11) is drawn in dependence of the energy (¢—2)m in keV. In all cases of the numerical
calculation the asymptotic value of x is chosen as 2. 5x 10* and the parameter § is varied
between 10-% and 10-7 without any noticeable effect. According to the resonances of the
cross-section magnetically quasi-bound states should exist with energies given in Table L
Simultaneously the life-time of the quasi-bound states is calculated from the half-width
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Fig. 2. Cross-section o (in arbitrary units) in dependence of the energy (e—2)m according to (4.11). The
maxima characterize the energy of the resonances and the width of the resonances gives the life-time of the
quasi-bound states. Obviously, the resonances possess a feinstructure in form of a doublet structure

- r—aa |

\ —

N e —
0 500 1000 1500 20002500 30003500

0

Fig. 3. The course of 'p' y in arbitrary units as function of the distance x for the resonance energies of

761 keV (solid line) and 475 keV (dashed line). The maximum values are reached at x = 1. For the other

resonance-energies one obtaines very similar curves, where with decreasing energies the beginning of the
scattering wave is shifted to larger distances
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of the resonances. The comparison with the experimental data shows good agreement.
In Fig. 3 the density distribution (3.7) is given with the help of (4.10) for some resonance
energies.

4.2. Negative total parity

In total analogy to the foregoing section we can analyze the scattering states for j = 0
and negative total parity starting from the equations (2.14b). Going over to the second
order differential equations we find for f{*:

d2f3(+’+2df3‘+) 3a/r dffY [2 oF
dr® r dr E+3afr dr

r, r
o> 2am?r 6a/r E? 4m?
3 (+) (+)
-7 + —(1- — = 0. 4.13
“ + E+afr E+3a/] 4 ( E2) 3 (4.13)

Herein the third term as well as the third up to the fifth therm inside the bracket describe
the magnetic interaction, whereas the first one inside the bracket is the centrifugal potential
and the second one the Coulomb potential. With the substitution (3.1) and

E+3
§+)=‘/ + “/",F

4.14)
r
. d
it follows from (4.13) (’ = —):
dx
~V(x)F+k*F =0 (4.15)
with the effective potential
2 o o 2a%/e? 6 27/4
Vo)== % 3% - + 4.152
(=) R e R x+1  x*x+1)  x¥(x+1)* (4.152)

and the “energy”, cf. (3.9b):

K = (i>2 (1- fi) (4.15b)
2 g

The first term in (4.15a) is the centrifugal potential and the second one the Coulomb po-
tential; all the other terms describe the magnetic interaction.
The solution of (4.15) regular at x = 0 and corresponding to (4. 5) has the form

Fis) = x(ﬁ“/”e*""‘f(i,(x) (4.16)
with the boundary condition:
feey0) = 1. (4.16a)
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Following the procedure of the equations (4.6) up to (4.9) the stationary scattering states
are- described by the wave-function

F = —2x3+UD /a7 h7 gin (kx—y),

b
COS Yy = = 4.17)
Ja®+b?
as solution of (4.15). Taking into account that the wave-function (4.14) belongs to / = 1,
the partial cross section for j = 0 with negative total parity is given by the scattering phase
y as follows (cf. (4.11)):

o~ % lim cos? y. (4.18)
> k X—rw
The differential equation for a(x) and b(x) follows after insertion of F,,, respectively
to (4.16) and (4.15). Doing this we neglect in (4.15a) the Coulomb-potential, because we
are interested only in the magnetic interaction; furthermore we damp the magnetic term
proportional to (1 +x)~! for large x-values by e™*; otherwise the scattering phase y would
have a logarithmic asymptotic behaviour. Thus we find (f;, = a+ib):

- [24/3+1 20% &%
(X + +2k ! — i
I+ [ - i :If(+) [82 o

. 11 _
o +47 (—— - ;> —2ik(\/3+7%) ;]fm = 0. (4.19)

This differential equation corresponds exactly to (4.12) and is solved by the same numerical
procedure. From the asymptotic behaviour of the solutions for different e-values the scatter-
ing phase y is obtained according to (4.17) as function of a energy.

The result is given in Fig. 4 where the cross-section according to (4.18) is drawn as
function of the energy (e —2)m. In Table II the energies and the life-times of the resonances
are given and compared with the experimental data.

5. Final remarks

The comparison with the experimental results in Section 4 shows that there exists
an evidence of the e*e--resonances in form of e+ or e~-lines only in the range of 200 keV 2 E
2 400 keV, whereas from the theory a larger spectrum of resonances follows. The explana-
tion of this fact may be, that at low energies with longer life-times of the resonances an
annihilation of the ete--pairs into two photons occurs [17] and that for high energies the
absolute value of the cross-sections goes down very rapidly. In consequence of this only
in the middle range of energies the resonances are observable. Practically the same results
are obtained from Barut’s relativistic two-body equations (2.17). Finally we note that in
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Fig. 4. Cross-section o (in arbitrary units) in dependence of the energy (¢ — 2)m according to (4.18). Obviously,
the resonances possess a doublet-structure

consequence of the effective potential (3.9a) and (4.152) no real magnetically bound states
exist with long life-times. However, the application of the integration method used above
to the electrically bound system with energies E < 2m leads to the known stable
energy-cigenstates of normal positronium.
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