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INTERMITTENCY FROM NON-RANDOM CASCADES*
By K. ZALEWSKI
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A deterministic cascade model similar in many ways to the random cascade 2-mode!
is described. This model suggests the relation a+5 = 2 for the parameters of the (/ = 2)
e-model. Some predictions for experiment following from this relation are presented.

PACS numbers: 12.40.Ee

The experimentally observed intermittency [1] can be interpreted as due to a selfsimilar
random cascade. A particular realization is the a-model [2, 3], where the experimentally

measured slopes f, are!
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Here a and b are parameters of the model and the parameter / = 2, i.e. at each step of the
cascade each rapidity bin splits into two.
In this note we show that in the special case
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one can derive formula (1) from a model without randomness. Just like in the a-model,
one begins with a uniform density distribution in the interval [0, 1], then one splits this
interval into two equal subintervals [0, 0.5) and [0.5, 1] and obtains the density in each
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! We ignore for the moment complications arising for very strong intermittencies [6], when f, calcu-
lated from this formula exceeds p—1,
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subinterval by multiplying the density from the parent interval by a suitable factor. Instead,
however, of choosing these factors at random, one chooses always the factor a for the left
interval and always the factor b for the right interval. Because of condition (2) the resulting
probability density remains normalized to one exactly, and not only on the average as in
the a-model. At each further step of the cascade each of the intervals obtained in the pre-
vious step is again split into two subintervals of equal length. The density in the left subin-
terval gets an additional factor a and that in the right one a factor b. After a large number
nof steps one can obtain at the bottom of the cascade a probability density, which is normal-
ized to one and changes from 4" in the vicinity of zero to b” in the vicinity of one. We
have assumed for definiteness b > a. The case a = b is of course trivial.

The Renyi dimensions [4, 5] for the probability distribution of particles along the
rapidity axis are

;
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In general, the Renyi dimensions are defined by the relation [5]
Ymf~ 8PV 550 @

where m;, is the probability density integrated over the i-th bin, & is the bin width and the
summation extends over all the 2" bins at the bottom of the cascade. In the present case
this formula reduces to
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Since the sum is the n-th power of a’+b?, this yields
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equivalent to (1).

The model can be generalized by assuming that each interval splits at each step not
into two, but into N subintervals: «N subintervals getting a factor @ and SN subintervals
getting a factor b. Then a+pf = 1 and aa+ b = 1. One gets the results of the a-model
without condition (2), but with / = N.

For a = 0, b = 2 all the non-zero probability density is concentrated in the last bin
whatever the length of the cascade. The sum (4) equals one for any n and p. Thus all the
Renyi dimensions are zero as one should have expected for a point-like distribution. In
the a-model all the Renyi dimensions are zero whenever 0 < a < 1 and
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This, however, is related to the fact {6] that all the averages of powers p > 2 of the fotal
multiplicity diverge for the cascade length tending to infinity. In the present model any
power of the total multiplicity is fixed.

The density in each bin can be characterized by the exponent a defined for § —» 0
by [5]

m; ~ &° ®

where ~ means equal up to a é-independent factor. Denoting by N, the number of bins,
which have the exponent «, = «, one can define the function f(a):

Ny~ 6779, )

The function f(a), which characterizes the density distribution, is the Legendre transform
of the function (p— 1)d, [5]. Therefore, since the present model has in case (2) the same
dimensions d, as the a-model, it also has the same distribution f(a). Consequently, the
density distribution at the bottom of the cascade of the present model differs from the cor-
responding density distribution in any of the cascades given by the a-model only by a permu-
tation of the 2" intervals, except for fluctuations, which are irrelevant, i.e. do not affect
the average values of the moments. Of course, the rapidity distribution from the present
model, where the particle density changes, almost monotonically from one end of the
rapidity range to the other, is not realistic. Nevertheless, the model seems interesting,
because of its close relationship with the much more complicated random cascade a-model.

Condition (2) has a simple interpretation in terms of the a-model. For a+b # 2
function f{(e) for the a-model is negative for some values of a. This for sufficiently small
& according to (9) corresponds to N, < 1, which in the random cascade model just means
a small probability to find a bin with density characterized by «, but cannot be realized in
a deterministic cascade.

Assuming condition (2) for the a-model, one can find both a and b from one experi-
mentally measured slope f,. E.g. the TASSO result [7]: f, = 0.023+0.003 yields

a=0873 b=1127 (10)

both close to one. Substituting
a=1-¢ b=1+¢ an
one finds from (1) neglecting terms O(e*) one more derivation of the popular relation
fo = Cp(p—1). (12)

Here
2
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This yields f; = 0.070 and f, = 0.140 to be compared with the experimental values [7]
Jf3 = 0.0801+£0.014 and f, = 0.134+0.052.

= 0.0116 (13)
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For the lognormal distribution [3] formula (12) is exact for all p. There, however,
function f(«) becomes negative for « < (1—,/C)? and for « > (1+,/C)?. Thus no non-
-random version of this model exists.

In Ref. [8] we have introduced the slopes ¢,, characterizing the fluctuations of the
moments of the multiplicity distribution. From (1), (10) and formulae given in Ref. 8]
one finds ¢,, = 0 for all p, g. For the lognormal distribution, where formulae (12), (13)
hold, one finds ¢,, = 0, unless pg*> > C-' ~ 86.

The cascade in the present model is selfsimilar just like the cascade in the a-model.
Thus, one expects the exponents f, to be well-defined. An additional assumption is necessary
only to avoid f, = 0 for all p, which would mean no intemmittency. In the a model this
additional assumption is randomness. The present model shows that this is not the only
possibility.

The author thanks A. Bialas, A. Szczerba and J. Wosiek for helpful discussions.
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