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A CLASS OF TYPE D METRICS
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We study a class of solutions to the Einstein-Maxwell equations that includes the
Kinnersley-Walker solutions, but without using a contraction procedure. Type D metric
postulated in this paper is endowed with seven arbitrary parameters.

PACS numbers: 04.20. Jb

1. Introduction

In the paper done by one of us (J. F. P.) and Demianski [1] (see also [2]) a sevenpa-
rameter type D solution to the Einstein-Maxwell equations with cosmological constant
has been found.

Then it has been shown that all known type D solutions of E-M equations can be
obtained from this sevenparameter solution by the so-called “contraction procedure™ [1].
In particular in this way one finds the Kinnersley-Walker (K-W) solution [3].

In the present work we consider the sevenparameter metric that includes as its special
cases both the K-W metric and the metric of Ref. [1], but without the contraction pro-
cedure.

Let x* = (p, ¢, 0, 7) be real coordinates. We consider the metric of the following
form

4 P
ds® = sin"*(p+q) l:}—) dp*+ y [cos ¢ sin’q dt+sin ¢ cos’q da]?

4
+ 0 dq®— % [ —sin ¢ cos® pdr+cos¢sin2pda]2:] 1.1)

where ¢ is a constant parameter, 4 is defined by
4 = (cos ¢ sin p sin g)* +(sin ¢ cos p cos g)?, 1.2)
P = P(p) and Q = Q(q) are arbitrary structural functions.
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2. Metric, tetrads and connections

We study a class of metrics given in real coordinates x* = (p, q, 4, t) by (1.1). The
signature is (+ + + —) and the units are such that c =1 = G.
Select the real orthonormal tetrad (¢*) and the complex null tetrad (%) according to

1’

et [
) \/2(e " sin(p+q) P

. 1 \/
Y= (' B — o dt+ d
e i.\/2(e e) = sm(p+q) [cos ¢ sin’q dt +sin ¢ cos’q do],
v ety o ! \/7 4
e —= (e — q,
V2 sin(p+¢) V Q
, 1
et = — (¢ = \/ [ —sin ¢ cos’p dz+cos ¢ sin’p do]. Q.1
V2 sin (p+q)
Then
ds? = (") +(e) +(e¥) —(e*)? = gope”e® = 2e'e? +2e%* = g, e’ 2.2)

We have also

e = det [led || =

St (p+a) 23)

The connection forms with respect to the null tetrad given by (2.1) can be found from
the Ist Cartan structure equations (de*+7I7, A & = 0):

t e
4
I'sy A{e B{e" 24
I+, = C(e' —e®)+D(e* —¢*),
where
Im(A+D) = 0 = Im (B+C). (2.5)

The functions 4, B, C and D are given by

Q& B P i
24 C 24 ¢
. P : Q
C =sin(p+q)- \/:—Z—Z ‘(InQ),, D =sin(p+q)* \/EZ - (In Q),, (2.6)

where

sin¢ cos pcos g+icos¢ sinpsing,

¢
u = sin¢ cos? p+i cos ¢ sin? p,
v = sin ¢ cos? g+ i cos ¢ sin? g, 2.7
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and the function Q is given by

{sin(p+q)
= e ‘8
(PQ)"? 9
Moreover, we have
din Q = C(e' +-e?)+ D(e* +e*).

We conclude this Section with the remark that as 'y, =0 =1T,,, and I'y;3 =0
= I3, the real null directions ¢* and e* are geodesic and shear-free. Changing them by
a factor:

4 (o3
KHdx* = sin (p+q) - \/ = {‘} (2.9)
0 le
we find that these new geodesic and shearless null directions have the common complex
expansion:

#sin 2” iy (2.10)

3. Curvature

Having the connection (2.4) and (2.6) we can compute the curvature from the second
Cartan structure equations

dre,+I°, A I' = R% = 1/2R% 4 A €.

The result reads

Ry, = 2-lj(sin2 (p+4q)- P—3sin 2(p+q) - P+4[3~2sin® (p+g)] - P)
+ %(% ({+V0) sin(p+4q) - P+[vw—2cos (p+4q) - [v{+V{]IP)
- %(% (g +al) sin (p+q) - Q+[uia—2 cos (p+4) - [+ AL110),
Rys = 5 (6in? (+a)- O=3sin 2p-+q) - Q+4[3-2sia” (p+9)] - @)
- 217 G W+ sin(p+q) - P+[vw—2cos (p+q) - [W{+V{]1P)

1 )
+ 2-2(% (u¢+ i) sin (p+9) - Q+[puii—2 cos (p+q) * [l +AL]10),
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&4
—v (sin (p+9): P+ [2% —4 cos (p+q)]-P)). 3.0

In these formulae R,, = R°,, are the tetrad components of the Ricci tensor, R = R*
. is the scalar curvature. The five complex scalars C are the objects used to describe the
conformal curvature.

In addition we obtain

C® = % + —1—<ﬁ (sin (p+4q)- 0+ [2?’: —4 cos (p+q)]°Q)

C¥=C®=0=C?=c? (3.2)

and all components of the Ricci tensor, except R;, and R,,, vanish.
The result described by the formulae (3.1)~(3.2) exhibits the algebraic structure of
the curvature tensor of our metric.
The case of
R= —4), 3.3)

where A is the cosmological constant, deserves attention.
As R = 2(R,,+ R;,), the equations (3.3) and (3.1) yield

sin? (p+q) - (P+0)—3sin 2(p+9q) - (P+Q)+4[3-25sin? (p+q) - (P+Q)] = —414.
(G4

A A
We intend to integrate this equation. Define P, = P—C+ T and @, = Q+C+ 16"

62 aZ , 62 62
2 416) [ +4)Po =0, [ +16)-(—5 +4)Qo =0 3.5
(ap2+ ) (ap2+) ° (aq” ) (aq” )Q° 39

and one finds that

Then

i++,2+ﬁ.4+,1cos2¢+b 0s 2p+ l+ 0s 4
= - — m sin COS _—— a S N
16 TeTasmep P 12 P g T)esP

A in 24+ Bsin 4g+ (5522 _ b} cos 2+ (= = s 4
=—— = " —b }cos — — —acos 4q,
T c+a sin 2+ f sin 4q D q 28 s 4q

(3.6)

where a, b, ¢, a,  and A (cosmological constant) are free parameters of the solution.
Assuming that the structural functions have their special form (3.6), we compute the
curvature quantities R;;, Rag4:

s 4
sin
Ry; = —A+(a+bcos 2¢+c).__(11i‘i)

s 4
Ry, = —A—(a+bcos2¢+c) S pTd 3.7
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4. Electromagnetic field

~ Having P and Q given by (3.6) we construct a solution of the Maxwell-Einstein equa-
tions with cosmological constant. We apply the Rainich-Misner-Wheeler procedure [4, 5].
The Einstein-Maxwell equations written in tensorial notation are

™, =0, f, =0, (4.1)

G,y = 81T, +1g,, (4.2a)
where

4nTuv = —f;wf va+ gnvF (42b)

J,v is the tensor of electromagnetic field and 7, is the energy-momentum tensor of electro-
magnetic field. The invariants of the electromagnetic field are:

F=2%fuf" G=231f/" 4.3y
where the duality operation is defined by
FHY i ghves
- T = a* 4.
= = (4.4)
We now assume that the metric (1.1) with the specific structural functions P and Q given
by (3.6) fulfills the dynamical equations (4.1) and (4.2)
We determine the corresponding electromagnetic field by working with its ortho-
normal tetrad components
Jov = fnes ey’ 4.5)

Now, g = det|[g,,|| = det||gye*, e || = —(e')>, where according to (2.3) ¢
= det ||e*,|| = 4 sin*(p+¢g). We can understand ./—g in (4.4) as given by /=g = ¢'.
Then, the tetrad components of (4.4) are

v i
- ed
[ = ) e fowrs (4.6)
where £¥“?" is the numerical Levi-Civita symbol. Of course, indices @', b’ are to be mani-

pulated by |lg,»|| = |ldiag (1, 1, 1, —1)]| = ||g**]I.
It is well known that the equations (4.1) are equivalent to the statement that the com-
plex 2-form

® = f+f = fuw+fn)e” A & 4.7
is closed, i.e., we can replace the homogeneous Maxwell equations by the equivalent condi-
tion '

do = 0. (4.8)
Now, the tetrad components of the Einstein equations are:

Ga’b' = Ja’b’ +lgn‘b" (4'9)‘
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where:
ga'b’ = 2( —f;’n’.ﬁi’n’ + ga’b'F)' (410)

In the case of our metric where all components of R,,, except of R,, and R;,, vanish one
finds that

Gy Il = Iidiag (— Rsg —Rsas —Ryzo —Rya)ll (4.11)

Therefore, having at our disposal (3.7)

: . sin* (p+q) .
G ll = Allé6® [l —(a+b cos 2¢+C)—Az—i diag (=1, =1, 1, D|. (4.12)
‘Thus, in order to have this condition fulfilled
. sin* (p+
1671 = —(a+b cos 2p+c) %‘D Idiag (=1, —1, 1, 1) . (4.13)

This condition holds if and only if the nonvanishing components of f,,. are:

Jra= =K, fr4=6, (4.14)
If so, the only nonvanishing components of f oy are
Fro =i, fyu =ik, (4.15)
Hence
F =F+G = —-1(&+iw) (4.16)

We have thus according to (4.10) and (4.14) that the components of &, are
€%yl = (E2+#7%) - |ldiag (-1, —1, 1, 1)|. 4.17

‘Then, by comparing with (4.13)

sin® (p+4)

E*+H#* = —(a+bcos2p+c)- e (4.18)
This valid, we have
=2
; +
é’+i.}f=\/—(a+bcos2¢+c)-e""-§m—?—;—q), (4.19)

where { is given by (2.7) and real function y is to be determined. The phase factor '
is related to the ambiguity of the duality rotations with precision to which the energy-
-momentum tensor determines the electromagnetic field in gengral algebraic case (# # 0);
we will determine y from Maxwell equations. From (4.7), (4.14) and (4.15) one gets

@ = (E+iX)- (€ A ¥ +iet A Y), (4.20)
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Substituting here e* from (2.1) and &+is# from (4.19) we obtain

sin g cos p dt—isin p cos g do
sin ¢ cos g cos p+icos ¢singsinp

0= \/—(a+b cos 2¢p+c) - €¥ - d( ) 4.21)

Finally, defining

e+ig = —v —(a+bcos2¢+c) e (4.22)

we have

sin g cos pdt—isin pcos q do
qcosp peosq ) (4.23)

o =(e+ig)-d .
(etig) (sin¢cosqcosp+icos¢sinqsinp

The electromagnetic field is non-trivial if e+ig # 0. Having w, we easily see that
the condition dw = 0 is equivalent to dy A @ = 0. The latter condition yields (see (4.20)).
dy =0, (4.24)

Therefore ¢ must be a constant and, consequently, e and g are real constants which char-
acterize the electromagnetic field.
Notice that

sin (p+4)
sin ¢ cos g cos p+i cos ¢ sin g sin

4
F =F+G = —%( p) “(e+ig)’, (4.25)

and the following relation holds
at+bcos¢ptc+er+g2=0. (4.26)
Observe also that if we write
o = (e+ig) - do, “.27

with @ defined by
sin g cos p dt—isin p cos g do

O = s X
sin ¢ cos-q cos p+icos ¢ singsin p (4.28)
then using (2.1) we obtain
sin(p+q) [isin2p , sin2q ,,
= qiz | TpiE € 0 e
sin (p+4q)[sin2p sin 2q
= — 2(2A)1/2 {:Piﬂ (el._e2)+ W (e3__e4) . (429)

These formulae determine the tetrad components of the electric and magnetic potentials
in the present gauge.
‘Then

Lo . 3
sin (¢ p)} (Sm (p+4)) ’ .30)

c® = —2i [aei¢+258+w+i(ez+gz) Z 4

where { = sin¢ cos p cos g+icos¢ sin psin g.
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5. The sevenparameter solution and the Kinnersley-Walker metric

The metric given by (1.1) is invariant under the change ¢ - ¢+7 (=0 -» —o,
F > F and C® - C?). Therefore, one can assume that ¢ € (—n/2, n/2].

Starting with the metric of the form (1.1) with the structure functions P and Q given
by (3.6), we perform the transformation of coordinates given by

p' = (tg$)*ctgp, o' = —(sin ¢ cos $)'/*r,
g =(tgd)'*ctgq, ' = —(sin¢cos¢)’s, (5.1)
where ¢ € (0, n/2). Substituting (5.1) into (1.1) we obtain
1 1+(Ptq')2 2 P’ ’ 2 2
= ~ 5" dp’ + T do +qf dT'
(' +9) ( P ) L ]

P’ 1+(p'q

1+(P q’)z 12 Q, ’ 72 ’ 2)

+ —— dg'*— ——=—— [di'— p'*do , 5.2
Qo 1 1+(p'q )2[ prdo] ©2)

ds®

where

1 A
P = (_ < —g$+y> +2np'—ep'+2mp" + (- 6 —6’3—7> ',

’ A 2 ’ 2 3 A 2 14
Q@ =|—ctg—y)+2ng +eq +2mg T+ | — L +ety |a (5.3)
and the arbitrary parameters from both’ metrics are related as follows

(cos 4))”2 a—2p <cos ¢)2/2 6a—2c
n= & =

sin ¢ cos’¢ ’ sin ¢ cos’¢ ’
_ [cos ¢ \** a+2
"~ \sin¢ cos’¢’
i cos ¢ \?/? e+ig
eo+igo = ,
o180 sin ¢ cos® ¢

cos ¢ \¥* g? a—b+c
Y =< ) 5.9

sin ¢ cos*¢d  cos’¢p

The corresponding expressions for the electromagnetic field, its complex invariant
and the only nonvanishing component of the conformal curvature are obtained by sub-
stituting (5.1) into (4.23), (4.25), and (4.30)

’ d ’ + N d !
0 = (origd (T2,

ot ! (5'5)
1—-ip'q
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1+ ' 4
f=~%%+mf[£%%] (5.6)
1-—-ip'q
t_ ot l+ ’ 3
c‘”=2[(m+in)—(e3+g§) 2 .?,](” ") (5.7
1+ip'q 1—ip'q

This is the well known solution given in [1] (see also [2]). Here the parameters n, m, a,
b, ey, go correspond to mass, NUT parameter, angular momentum, acceleration, and
the electric and magnetic charge, respectively.

We obtain another class of solutions starting again with (1.1) and assuming of ¢ to
be either zero or n/2. With ¢ = #/2 and the transformation of corrdinates

p=1tgp, o =—o,
9 =tggq, 1v=r1, (5.8)
we obtain
ds* = (p'+q')"? (d—f::—z +P'de’*+ %q: —-Q'dr'z) , (5.9)
where

A
P = <— P +a+b+c) +2n,p'—e,p'*+2m,p"*+(a—b+c)p'?,

o= (-

From (4.26) with ¢ = n/2 we have a—b+c¢ = —(e?-+g?). Then (5.10) can be rewritten
as follows

-a-—b—c) +2n,q +&,9"*+2m,q"*+(—a+b—c)g'*. (5.10)

YRS

l ’ ! !
P = (" 3 +')’1) +2n,p'—&,p'*+2mp'*—(e* + g%)p"*,

!’ A ! [ ’ ’
Q = (- F —'y1> +2n,q' +&,4'* +2mq’ 3+ (2 + g»)q'*, (5.11)

where
n, =a+2f, & =6a-=2, m;=a-28, y, =a+b+c. (5.12)
The electromagnetic field is given by

o = (e+ig)d(q'dt’' +ip'ds’). (5.13)

= —+(e+ig)’(p’ +4')%, (5.14)
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and the only ronvanishing conformal curvature invariant is

C® =2[m;—(*+£) (' ~q)N [P’ +4'T. (5.15)
Now, assume ¢ = 0. The following coordinate transformation

’

p=ctgp, v =—-0, q =ctgq, o =—z (5.16)
leads to the metric (5.9) with the structural functions

’ )' ’ ’ ! [
P'= (— c +70) +2nop" —£op’ 2 +2mop’* —(e* + g*)p"*,

A

Q' = (— c —?o) +2n0q" +80q' > +2mog"* +(* + g°)q'*, (5.17)

where
Yo = a—b+c; a+b+c= —(*+g%),
ng = a—2f; mo=a+2f; & =g = 6a—2c.

The electromagnetic field and the invariant conformal curvature are given by (5.13)-(5.15),
(the latter with m; — m,). The solution obtained above (¢ = 0 and ¢ = 7/2) was studied
extensively by Kinnersley and Walker.

As it is well known this solution can be also obtained from the sevenparameter solution
(5.2), (5.5) by the following contraction procedure [1].

@.q,v,a)> 1" (p,q,7,0)
n-In,
e - 2
m— Bm,
7 = I*%85+70
eo+ige = [2(e+ig)
Ao A

with [ — oo.

Assume now that the parameter ¢ of (1.1) belongs to the interval (-—G s O). Equiva-

lently, one can perform the transformation ¢ — —¢ and then assume that ¢ E(O, g)
Consequently, the following transformation
P =(ctgd)*tgp, o =(sincosd)lo, ¢ =(ctgd)itgg, < = —(sin ¢ cos P)*z

leads to (5.2) and (5.5) again.
Discussions with Dr. M. Przanowski are appreciated.

Editorial note. This article was proofread by the editors only, not by the authors.
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