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The influence of the angular momentum on the relationship between nucleon transfer
and kinetic energy loss in deep inelastic heavy ion reactions is studied within a discrete two-
-dimensional random walk formalism. It is found that the dependence upon the number
of steps g of each of the physical quantities calculated is rather insensitive to the angular
momentum. When this g-dependence is converted to energy loss, the sensitivity to L is
increased and becomes more pronounced for larger values of Ejogs becoming extreme as the
energy loss approaches its maximum value for each L, reflecting the fact that in this limit
more and more nucleons must be transferred to effect any given increase in the energy
loss. On the other hand, this situation is not expected to occur experimentally, where large
L-values are strongly correlated with small energy losses. Thus physical processes at small
energy losses, where the sensitivity of the observables to angular momentum is calculably
small, are associated with the largest angular momenta, whereas in processes involving
larger energy losses where the observed quantities are calculated to have an increasing sensi-
tivity to L, only small angular momenta are involved. Thus the present analysis offers quanti-
tative support for the view that such deep inelastic processes are not very sensitive to the
value of the angular momentum. We have also sought to understand the angular mo-
mentum dependences calculated as reflecting primarily the angular momentum dependence
of the random walk transition probabilities. The results show that the dependence of
these probabilities upon L, implicitly through their dependence upon Ejes, is, for large
values of Ejess, such as to yield qualitatively the calculated dependences upon L of the
several observables.
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1. Introduction

A discrete two-dimensional Random Walk (RW) formalism [1] has been used to study
the relation between nucleon transfer and kinetic energy loss during deep inelastic heavy
ion reactions. Neutrons and protons were assumed to be transferred between two interact-
ing nuclei with transition probabilities assumed proportional to the level densities of the
final states. Each such nucleon transfer is assumed to involve a certain dissipation of the
kinetic energy of relative motion into heat. In order to accommodate other possible physical
processes which lead to dissipation of energy by some means other than nuclear transfer,
a fifth non-transfer step (in addition to the four possible transfers of proton or neutron
from the projectile to the target and vice versa) has been included in the RW formalism [2].
It leads simply to a renormalization of the transition rates.

By demanding the conservation of the average linear momentum during the transfer
process one can calculate the maximum energy consistent with conservation of linear
momentum which becomes available for excitation energy as each nucleon is transferred,
and thereby estimate the maximal kinetic energy loss per transfer. In previous calculations
[1, 2] the relative angular momentum of the two fragments has been assumed to be constant
with no possibility of a transfer of the relative angular momentum into internal angular
momenta of the projectile and the target. Thus the two nuclei were in effect assumed to
slide past one another without feeling any torques due to surface friction.

In the present paper we allow both for the rotation of the two nuclei individually
about the axes through their centers and for the rotation of the whole system about its
center of mass [3]. When nucleons are transferred between the projectile and the target,
the angular momentum of the relative motion decreases and the summed internal angular
momentum of the individual nuclei increases, conserving, of course, the total angular
momentum.

The mass and charge distributions of the reaction products are then described by a fam-
ily of functions of the energy loss, one for each value of the (conserved) total angular
momentum, as defined initially by the impact parameter of the collision.

In Sect. 2 we present the brief description of the random walk formalism, and in Sect. 3,
a derivation of the expressions for the energy loss due to nucleon transfer in a system of
angular momentum, L. In Sect. 4 we present our calculated results and discuss the effects
of a non-zero angular momentum on various calculated mean values and widths of the
mass and charge distributions.

2. Random walk

The basic assumption of the RW approach to the nucleon transfer problem is that
the (¥, Z) values of the projectile-like fragment (and, complementarily, those of the target)
change by a sequence of independent single-nucleon transfers through the “window”
which opens between the interacting nuclei. During each transfer, a certain average linear
momentum is carried from one nucleus to the other and a certain amount of energy is
converted from the kinetic energy of the relative motion to internal (or heat) energy.
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The probability distribution PN, Z} after g steps is given by
4
PI(N,Z)] = 70 TI(N, Z)— 4, q1P,_,[(N, Z) - 4,], 1)
a= .

where 4, = (0,0), (1,0), 0, —1), (—=1,0), (0, 1) represents displacement vectors on the
(N, Z) plane. The transition probability for a = 0 which describes the non-transfer step
is a free parameter,

To(N, Z,9) = v, )

while for « = 1, 2, 3, 4 the transition probabilities are taken to be proportional to the level
density g,(EY) of final states of the total dinuclear system which can be reached after the
transfer;i.e.,

TAN,Z, q) = o{E*[(N, 2)+4,], g}, «=(1,2,..4). A3)

The transition probabilities are than normalized for insertion into (1),
4
Ta(N’ Z’ CI) == (1 —')))T,(]/ Z T(S) (4)
=1

The final state level density in (3) has been assumed to have the following exponential
dependence upon ,/E*,

1 /0.25\" Y% 1
o(E*) = 1_2(?7") (E%)7% P [2r V(0.25/37)AE*]. )

Here A = A, + A, is the (constant) sum of the mass numbers of the projectile and of the
target. The excitation energy E* increases with ¢ and is calculated as the sum of the energy
dissipated by the nucleon transfer and the decrease in the ground state energy of the system,

E*(Nli Zl’ N23 ZZ’ q) = Ediss(q)—Egs(Zb Nl’ Zz, NZ) (6)

Here E,, is the ground state energy of the system (with respect to the injection point,
defined by the initial projectile-target projectile combination) after the ¢ nucleon transfer
and Ey4;,(g) is the (cumulative) total energy dissipated into heat after g steps;

Ediss(‘]) = Eloss(q) - Egt)(Q) - Egt)(q) (7)

Here E'}) and E{2 are the rotational kinetic energies of the projectile and target about the
axes through their centers. Also, Ej,.(q), the accurnmulated loss in relative kinetic energy
after g steps, is given by the difference between the initial kinetic energy of the relative
motion and its value after ¢ steps;

Eisi(9) = E0)— E(q). ®

The initial value of the kinetic energy of the relative motion in the center of mass frame
is given by

Ek(O) = Ecm—Ecour— Vers (9)
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where the CM bombarding energy of the reaction is given by

A2

Ecm = Epjpy ————, 10
R T (10

where E,,, is the kinetic energy of the projectile, 4,, in the laboratory frame. The Coulomb
energy for the two touching spherical nuclei is

o ezZ,7, 1"
Coul—Rl_I_Rza ( )
where, we use the droplet model [4] radii,
R, = 1.28473+08 4737 -0.76. 12)
The proximity potential [5] is given by
v, 4 RiR, (13)
r = T4 o
P "R R,
with
N+ N,))—(Z,+Z,)\?
y = 0.9517[1 —1.7826 (( 1+ N) =2, +2)) ] (14)
A +A4,
¢ = —1.8296 MeV/fm. (15)

The formulas for E, (g) and E{) and E!2) are derived in the following Section.

3. Angular momentum formalism

3.1. Linear and angular momentum transfer

We consider a system of two interacting spherical nuclei, 4, and A4, in contact in the
center of mass frame (see Fig. 1). The projectile-like fragment (4,) has linear momentum.
P, in the CM of the dinuclear system and an angular momentum of L, about its own
center of mass. For the target-like fragment, the linear momentum is P, = —P, and the
angular momentum is L,. We let L,,, analyzed in more detail below, denote the angular
momentum of the relative motion of the two fragments about their common center of
mass, C.

We assume that the nucleonic momenta are restricted to a plane defined by the unit
radial and tangential vectors # and 7 in Fig. 1 and we neglect the initial spins of target and
projectile. Then we can write

Py = P, i+P 7 (16)

and L,, = |L,| = Ly, L,, = L,, and L,,, = L,, for the components of the angular mo-
menta along the z-axis perpendicular to the plane of ¢ and #. The total angular momentum
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")

Fig. 1. Geometry of the dinuclear system

also points in this direction and is a constant of motion,
L=L+L,+L,,. (17y

For a system of two touching spheres we can write

Ll = Ilwl, (18a)
L, = Low,, (18b)
L].2 == Ing, (19)

where w,, w, and Q2 denote the angular velocities around the z-axis of 4,, 4, and of the
whole system, respectively, and the rotational inertias are calculated in the rigid body
limit:

I, = 2 A,mR3, (20a)
I, =% A,mR3, (20b):
I, = p(RY+R3)* = p(Ry+R,)* = pR},. 21y

mA A .
In (21), p = ——2 s the reduced mass, R} and R} are the distances from the center
A +A,

of the nuclei to the common center of mass, and m is the nucleon mass.
The relative angular momentum can also be related to the linear momenta via

Ly, = _PltR’l+P2tR;' 22y

Using the fact that. P, = —P; and R+ R; = R, +R, = R, (see Fig. 1), we may rewrite:
Eq. (22) as:

Ly, = —PyRy;. (23)
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We now consider a nucleon transferred from the projectile to the target (i.e., to the
right in Fig. 1). It carries with it its average share of the relative linear momentum of the
projectile, namely,

P+ = P{jA;. (24)

Moreover, if nucleus 4, before the transfer is rotating rigidly with the angular speed w,,
a nucleon at the window has also an additional tangential velocity,

u;, = oR,. (25)

Therefore the radial and tangential components of the linear momentum of this nucleon
as it crosses the window are

Pr+ = Py, /Ay, (26a)
b = mw R, +(Py,[A,). (26b)

Consequent to the transfer of this nucleon from left to right, the linear momenta of the
projectile nucleus and target nucleus assume the new values

Py =Py~p/, P =Pu+p; (27a)
Pli = Py—p/, Pj=Pu+p’; (27b)
and the angular momentum, the new value
L} = L,—p'Ry, (28a)
for the projectile and
LY = L,—p'R,, (28b)

for the target. The relative angular momentum after the transfer is
L1, = Lix+p'Rys, (29)
and one can easily verify that the total angular momentum, is conserved,
LY+L{+L}, = L,+L,+L,,. (30)

If a particle is transferred from the target to the projectile, i.e., to the left, the compo-
nents of its momentum are

pr = —Py/A,, (31a)

and
Py = —mw,R,—(Py,/43), (31b)
where we have used P, = —P,;. And again we can calculate linear and angular momenta

of the two nuclei after the transfer, with results that can also be obtained from (27) and
(28) replacing p* by p-, and interchanging the labels 1 and 2. Likewise, the relative angular
momentum is given by Eq. (29) with p," replaced by p,”. Again,we can easily check that the
total angular momentum is conserved.
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We now calculate the averages of the linear and angular momenta after one transfer
in each direction (i.e., from the projectile to target and from target to projectile). For the
target (1) linear momentum we obtain the results

P, = Pi.—(p —p7)i2, (32a)

P, = P, —(p —p)2, (32b)
and for the angular momenta,

L, = L,—Ryp/ =p))2. (33a)
Similarly,

L, = L,—Ryp —p)))2- (33b)
The linear momentum of the target is, of course, always given by P, = — P,. After substi-

tuting the definitions (Eqs. (26)) for p,” and p," and (Egs. (31)) for p,” and p, into Eq. (32)
we obtain, after g steps, half of which are in each direction, the following recursion relations
for the average target linear momentum

1 1

Pr =ij’( ’_])[l_'!'( + )]a 34

14q) 14 2 4, 4, (34a)
i i

pn(‘l) = P,,(q— 1) [1 _%(— + ““)] _; m(w R, +®,R,). (34b)
A4, A,

The last equation, (34b), can be simplified by expressing w, and @, in terms of angular
momentum L, and L,, via Eqgs. (18) and (20). Then one obtains

. -~ 1 1 L(g—1) Lyg—1 ,
Plt(q) = Pn(q_l)[l "”12‘(‘;‘ + 2‘)] "%( ;:qA ) + 21§‘21A2 )) (35)
1 2 1431

We observe thdt Egs. (33) can be simply written as

L, = L, +(P;,— PR, (36a)
and

1:2 = L2+(P““Pn)R2. (36bt

Then after any number of steps ¢, half of which are in each direction, we obtain the

average nuclear angular momenta in terms of the tangential component of the linear
momentum, as follows:

Li(q) = Li(0)+(P,(q)—P,(O)R, (37a)
and

Ez(‘l) = Lz(O)‘*(Pn(Q)“Pu(O))Rz- (37b)
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From now on, L (0) and L,(0) will be assumed to be zero, as is appropriate for reactions
between even-even target and projectile nuclei.

Iterating (34a) back to the first transfer step we can express the radial component
of the average linear momentum after ¢ steps in terms of its initial value and obtain

— 1 1
P,{q) = P,(0) [1-% (A_ + Z)]a (38)
1

To obtain the final expression for the tangential part of the average linear momentum,
we substitute (37) into (35) to obtain

P P Dil1—3 1 ! 2P (0 1 39
(@) = Py(q— )[ - (Z;+A2>] 1l )(Al sz) 39

Combining the first two terms, iterating back to the first transfer step and summing the
resulting geometrical series leads to

- 1 1 q
P,(q) = P,(0) {%‘ [1 "'% (Z—l + sz)] +%} . (40)
After substituting (40) into (37) the expressions for angular momenta become:
L@ = 2P| 1-2(% + L)[-1l & 41a)
14 7 L1 7 4, 4, 15
. 1 1 4
Ly(g9) = % P,(0) {[l—% (- + ——)] —1} R,. (41b)

3.2. Energy loss

The energy loss after g steps is defined by the difference between the initial kmetlc
energy of the relative motion and the kinetic energy after g steps,

Ei(9) = Eu(0)— Ey(q). 42)

E,(q) can be written directly in terms of the linear momentum P(q) and reduces for g = 0
to

1
Ef0) = El—l(Pfr(OHPf.(O)), (43)
where by (23),
P 12«(0)/2# = L2/2uR12, (44)

and L, = L,,(0) is the initial relative angular momentum, equal here to the (conserved)
total angular momentum of the system.
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Then the energy loss can be written as

1 5 ' 1 1 2
£ = g FHO[1- (124 (1 + 1)) ]
+P1(0) [1— <~=’r [1—% (—-1-— + —1—)]4+%)2]}. (45)
, A, A, .

However, of this total energy loss from the relative kinetic energy, the amounts,

Li(g)
EL =2 4
o= p (46a)
and
Ly
E: =2 46b
T (46b)

have been transferred into the rotational energy of the two nuclei, as required by conser-
vation of angular momentum. Hence, the net energy dissipated to heat, Ey;,,, is seen to be
correctly described by Eq. (7)

Esin(@) = Eins(@)—Li(q)/21, — L(a)/21,. “n

3.3. Rolling or sticking?

When nucleons are exchanged between the projectile and the target, angular mo-
mentum of the relative motion is transferred into the rotational angular momenta of the two
nuclei. From the conservation of the linear momentum it follows, by virtue of Egs. (18)
and (37) that there exists, at each and every step, the following specific relation between
the fragments’ angular velocities; namely,

wl = szz/Rl' (48)

In contrast, the so-called “sticking” condition requires that all three angular velocities
must be equal, w, = w, = Q. Hence, within the present RW transfer formalism, which
leads to relation (48) between fragments angular velocities, the “sticking™ condition can
be satisfied if and only if 4, = A4,, regardless of the number of steps.

On the other hand, the so-called “rolling” condition requires that

RIZQ = R1w1+R2w2. (49)

This condition is in fact approached for arbitrary values of 4, and 4, in the limit of a large
number of steps, as we now demonstrate.
First, we re-write the left-hand side of Eq. (49) with the help of Eqgs. (19) and (21) as

RQ= 2 (50)
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Similarly, using Eqgs. (18), (19), and (20) we find that

‘R1w1+R2m2=£ -I-fi—’+ La ). 1)
2m\AR, A,R,

Then from Egs. (41) and (44) we obtain, as the number g of steps becomes large, the follow-
ing limiting values for angular momentum L, L,and L,,,

L =2%2L " (52a)

and similarly,
Lg=2L—1 | 52b
i =7l TR (52b)

Since the total angular momentum is conserved, Eq. (17) together with Egs. (52) give
L3, = %L (53)
Therefore as ¢ — o0, relations (50), (51), (52) and (53) imply that

lim R;,Q = lim (R;0,+R,0,), (54)

q-* o q—©

which is precisely the rolling condition of Eq. (49). Thus the system will always approach
the rolling limit asymptotically as g — oo.
Since the total rotational energy of the system is given by

E - L21,+L221 + L,
Toq, 2, 0 2,0

(55)

we can also see from Egs. (20), (52), and (53) that in this asymptotic rolling limit the amount
of kinetic energy in the rotational motion of the two nuclei about their own axes and about’
their system center of mass is equal to

5 P{(0)

EX, =% =31 ) 56)
rot 7 Z,URlzz ki 2” ( )

Thus one finds that 5/7 of the initial tangential kinetic energy (44) is permanently un-
available for dissipation into random heat energy.-

To check the g — oo limit of the dissipated energy in Eq. (47) we use (52) first to express
the limiting values of the fragments’ rotational energies in Eq. (46) in terms of the initial
tangential linear momentum P,,(0) via (44) and (20). This leads to
P1(0) L

=10, _"° 57
20 *° 2uR}, ©n

1 - 10
Erot +Erot a9
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Also, the ¢ — co limit of E,,/7) in Eq. (45) is given by

0 1+ 0) P} (0)
Egy = { L (12 )}, (58)
2u
so the limit of Ey, in (47) as ¢ » 0 is
PZ(0 P}(0
Egp = D 21O (59)
: 2u 2u

which is consistent with Eq. (56) as is required by energy conservation. Since at least 5/7
of the tangential kinetic energy is tied up in the (minimal) rotational energy required to
honor conservation of angular momentum, the dissipated energy must always be less than
or equal to the sum of the remaining 2/7 of the initial tangential kinetic plus the initial
radial energy. Thus the system tends towards the “rolling” configuration in which more
kinetic energy is tied up in rotation, rather than towards the “sticking” conﬁguratlon
Note that in the special case of 4, = A4, the two limits coincide. A more detailed discussion
of these limits can be found in Ref. [6].

We note that for non-central collisions (L # 0) at a given bombarding energy, the
kinetic energy available for dissipation is always less than for. head-on (L = 0) collisions,
by an amount equal to the minimal tangential kinetic energy required to honor the conser-
vation of angular momentum. The smallest possible value of this rotational energy is given
by the “rolling” g — co limit of Eq. (57). The maximal values of E,q,,, Ey;,,, and of the energy
dissipated per step, then all diminish monotonically with increasing values of L.

4. Results and discussion

The formalism presented in Sect. 3 has been applied to calculate various observables
(the energy loss, the average values of the proton number, Z, and of the neutron number,
N, in the projectile-like fragment, the total widths a3, ¢ of the distribution, and the cut
widths a§| 4 and ai,z) as a function of the number of random walk steps, g. We have
considered two different reactions, Fe+U at E, = 464 MeV and Fe+Ho at E,,, = 464
MeV for different values of the angular momentum L, keeping T, of Eq. (2) constant
at the value fitted to o2 for the L = 0 case [2].

The purpose is to provide some insight into the effect of angular momentum on such
predictions, and the mechanism for such effects. For this purpose we shall first present
the calculated results and discuss their general features. Afterwards, we shall turn to a more
detailed discussion of the angular momentum effects.

Figures 2a and 2b present results for E,(q) versus g for Fe+U and Fe+ Ho, respec-
tively, for several different values of L. Itis obvious that, as mentioned in Sect. 3, both E,.(q)
and the energy dissipated per step, dE,/dg, diminish monotonically with increasing
values of L. The horizontal dotted lines in Fig. 2 show the “rolling” g - oo limiting valués
of Eloss for the several values of L. Figures 3 to 8, respectively, show Z, N, aA, 63, a,qz
.and az 4 for the Fe+ U reaction and several values of L, as labelled, plotted as functions
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Fig. 2a. The calculated energy loss, Ej,,,, versus number of steps g for the reaction Fe+ U at Ej,p = 464 MeV,
for angular momentum L = 0, 100, 150, and 195. The horizontal dotted line shows the limiting value of
Ejoas for each of the several values of L

Fe:Ho ________ _
150} L=0
1251
g loor
{Mm 75 L=190
— Caiculated values
50t ——- Rolling g=o Limit
o5l for each L-value

0 25 50 7 100 125 q
Fig. 2b. The same as in Fig. 2a for the Fe+ Ho reaction at Ej, = 464 MeV, with L = 0 and L = 190

of the number of steps ¢g. We notice that for all these quantities, as well as for E,,, and its
slopes in Fig. 2, the results for different values of L remain essentially the same up to about
25 steps, corresponding to E,,,, values of about 50 MeV.

For higher energy losses, the L-dependence for all the quantities studied is more
pronounced. To analyze the source of this L-dependence, we consider the L-dependence
of the transition probabilities of Eq. (1), which incorporate the physics of the random
walk calculation. In general, the dependence of the various moments upon the transition
probabilities is complicated, resulting from the solution of the RW equation. However,
under the assumption that T;’s vary slowly over the range of evolving probabilities, the
results simplify greatly. In Appendix A we show that the changes in the moments in the
q™ step (equivalent to the derivatives with respect to ¢ of these moments) can be expressed
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Fig. 3. The average number of protons Z in the projectile-like fragment for Fe+U at Ejgp = 464 MeV
for L = 0, 100, 150, 195, plotted vs number of steps g

N Fe+U
38}
36 -
] 222 .80 0
34} VoA

32

30

28 1

RPN WU AT EUIUD SO DU |

0 25 50 75 100 125 q

Fig. 4. The average number of neutrons N in the projectile-like fragment for the same reaction as in Fig. 3,
plotted vs ¢

simply in the terms of averages of the transition probabilities, defined as follows:

(T, = NZZ T(N, Z)P(N, Z). (60)

Specifically, we have shown that the first moments depend only upon average differences of
the form (7', —T,),, while the widths depend on the sums {T,+T3), and on differences
only in the second order.

To ascertain the effect of angulat momentum upon Figs. 3-6, we must therefore inquire
about the behavior of (T, +T3), and (T, +T,), with g for different angular momenta.
In Appendix B, we consider these quantities as defined by the density of final states in terms
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Fig. 5. The width o% for the same reaction as in Fig. 3, plotted vs ¢
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Fig. 6. The width o} for the same reaction as in Fig. 3, plotted vs ¢

of the dissipated energy Ey,,, of Eq. (7) and the differences between neighboring ground
state energiés during the late stages of the evolution. We show there (a) that the sums of
two transition probabilities vary much more slowly with Eg,,, than the differences, and
(b) that for large values of Ey;,, the magnitude of the difference |T, —T’;| diminishes mono-
tonically with E,,,, at every value of N and Z. -

Since the dissipated energy, Ey,,,, at any specified value of ¢ diminishes monotonically
with increasing angular momentum, as exhibited in Figs. 2a and b, one can expect from
these results of Appendix B that |T,—T;| and |T,—T,| are larger at a given g-value for
large angular momenta than for small. Then at a sufficiently late stage of the evolution
(which is to say, for large enough g-values), the slopes of N and Z in Eq. (A2a) should
increase with increasing angular momentum (as in fact they do in Figs. 3 and 4), whereas
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Fig. 7. The width q,’q z for the same reaction as in Fig. 3, plotied vs ¢

o
[0}
T

Fe+U.

] M B i

A M U AU S B |
o 25 50 75 00 125 q

Fig. 8. The width 0%« for the same reaction as in Fig. 3, plotted vs ¢
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Fig, 9. Same as in- Fig. 3, plotted vs Ejoss

563



564

38

Zl

Fe+U

T

L=I195 L=I50 L=I00 L=0

28 —d a1 PR WRUPUSUIN SRR S SO U | —
O 20 40 60 80 100 120 Eioss [MeV]
Fig. 10. Same as in Fig. 4, plotted vs Ejoe
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Fig. 11. Same as in Fig. 5, plotted vs Ejoss
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Fig.:12. Same as in Fig. 6, plotted vs Ejoe
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Fig. 13. Same as in Fig. 7, plotted vs Ejoqy
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Fig. 14. Same as in Fig. 8, plotted vs Ejog

those of a2(N), 6%(Z), 6*(N, Z) and ¢*(A4) should decrease with increasing angular momen-
tum in accordance with Figs. 5 through 8.

One concludes [7] that the angular momentum dependence of the calculated g-depend-
ent results presented in Figs. 3 through 8 behaves qualitatively as one would expect
from the analyses leading to Eqs. (Al) through (A4). Beyond that, the angular momentum
dependence of E,,, calculated as a function of g in Figs. 2 makes the results of Z, 6%(2), etc.,
vs E,, (in Figs. 9 through 14) readily comprehensible as a combination of the simple
L-dependence upon g of each such quantity and the nonlinear scale change from g to E,,,,
given by Figs. 2.

In short, the various numerical calculations presented here are all consistent with the
view that the effect of angular momentum upon the g-dependences of the various physical
observables is small and arises implicitly through the dependence of the transition proba-
bilities upon the energy loss, whose dependence upon angular momentum is chiefly re-
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sponsible for the calculated angular momentum dependence of N, o7, ... etc. On the other
hand, the angular momentum dependence of various quantities as functions of E,, itself
is somewhat stronger due to the nonlinear angular momentum dependence of E, on g¢.
In 'particular, a RW calculation which assumes throughout that the angular momentum
is zero is reasonably accurate both at small energy losses (corresponding in the physical
reaction to large values of the angular momentum) because of the insensitivity there to
angular momentum, and at larger energy losses, where the small angular momentum
assumption actually corresponds well with the physical reality.

The support of the U.S. Department of Energy for this research is gratefully acknowl-
edged. MZP and MD would like to express their gratitude to the Nuclear Theory Group
of the University of Maryland in College Park for their support and hospitality during
their stay there.

APPENDIX A
Expressions for various moments in terms of averaged transition rates

The relationship between the transition probabilities and the average values of such
quantities as N, Z, N?, NZ, etc., which define the measured quantities calculated in the
figures can be quantified by considering the amount 4{M), by which the average value
{M) changes in the g™ nucleon transfer, as follows:

MMy, = (MY, —(MYy_y = ¥ M(N',Z')[PAN',Z')=P,_ (N, Z)], (Ala)

N'Z'

AMy, = Y. M(N'Z)AP(N'Z). (Alb)

N'Z'

Then Eq. (1) provides the expression for AP,(N’, Z’) in terms of the transition probabilities,
T{N’,2Z’), and one can calculate the fdllowing exact specific results,

A(NY, = (T, =T, , = NZZ'[Tl(N’, Z')-TyN', Z)]P,- (N, Z'),  (A2a)

ANy, = AT+ T3)g o + 2N AT = T30y s + 2N =N - ) (T = T30y
(A2b)
A<Nz>q = <Z>q——1<T1"‘T3>q~1+<N>q—1<T4—T2>q—|
+UZ {23 1) (T} = T3)+(N =N, ) (T, — T3)), (A2c)

with corresponding results, in which (T,—T3) and (T, +T,) replace T, +T; when Z re-
places N. If the transition probabilities are nearly constant, then the last terms in (A2b)
and (A2c) can be neglected, and the quantities

<T1 iT3>q—1 = NZZ P ~1(N’s ZI) [TI(N’a Zl)i T3(N” Zl)] (A3)
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determine these various increments at the g™ nucleon transfer, and therefore the slopes
of the curves in Figs. 3 through 6.
In particular, for a,f(N) and aZ(Z) the results (A2) imply that

A0g(N) = KTy +Ts)go 42N KTy = T3)g- 1 +2{(N =Ny ) (Ty = T5)>g 4

(Ada)
with an analogous result for crqz(Z). Also, for aqz(A), we find
A6X(A) = ATy + T+ T3+ Ty gy — Ty — T3+ To— T2
+2{(A—L D) (T — T3+ Ty —T,)>4-1- (A4b)

In Eqgs. (A4) we again neglect the final terms on the assumption that the T}’s vary slowly
over the range of the evolving probability distribution. Note also that the normalization
condition (4) implies that in Eq. (A4b)

T1+T2+T3+T4= 1""T0=1—‘7. (AS)

We note that the results (A1) through (A5) reduce immediately to the exact model results
of Table 2 of Eef. [8], under the assumption made there that all TN, Z) are constant,
independent of N and Z.

APPENDIX B
Angular momentum dependence of averaged transition rates

In this appendix we consider the quantities (T, + 73> and (T, — T3> which occur in
the expressions (Al) through (A4) for the increments of the various physical observables.
We find that for sufficiently large values of the dissipated energy, the former quantity
approaches a constant while the latter diminishes to zero as (Eg;,)~ /%

Since this is true at every value of N and Z, it is also true for the averaged values,
(T, +T5), and (T, —Ts),, which determine the behavior of 4(N,, 462(N), etc., in the
equations cited, provided only that the distributions PN, Z) are not too different for the
situations compared. Since in particular we wish to compare situations corresponding
to different values of the angular momentum, the relatively small differences calculated
among the various angular momentum values at a given g-value in Figs. 3 through 8 tends
to corroborate this assumption. If in addition the transition rates are changing slowly
over the width of the distribution, the tendency for the magnitude of these quantities
simply to scale inversely with the dissipated energy is enhanced.

We consider the transition probabilities defined by Eqgs. (3)-(6), upon which ail of
our numerical calculations herein are based. In particular, we consider the quantities,
R*, proportional respectively to the difference, T, — T3, and the sum, 7', +T5:

_ T,FT, _ {e"n(Ee:u—Ex) + e"d\S(Ed tss "Es)}

F o= = )
(1—y) ¢V a(Bdiss— E1) 4 g¥a(Eaies — E3) + Vé(Fates~ E2) 4 gVa(Eatas—Ea)

(B1)
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where the T, are given by Eq. (4), a = n*4/er = (n124/37) MeV-1, and E, is the ground
state energy of the nuclei at the locations (¥, Z)+4, with respect to the ground state energy
of the injection point, and hence is of the order of a few MeV. Also, for simplicity we have
neglected the slow (E*)*’* dependence on E* from each of the exponentials of Eq. (5).
We first expand all of the exponents in the small parameter E;/Ey,,, keeping only the leading
terms. This leads to

1'_*‘_9— 1/2(E3-EN)/&

-1 - ( )
R J2(Ei—El)/& ?
E e

i

where & = (Eg;,,/a)'’? is the relevant measure of the dissipation energy. Then in the limit
of the very large Ejy;,,, the quantities (E, — E;)/& can be considered smali and the expansion
of the exponentials leads to the following simple form:

lim RY = 1/2[1+(E,+E,—E,~E;)[88+0(&™") ...] (B3a)
Egtas—
and
lim R™ = (E;—E))/88+0(&™?). (B3b)
Eqjss— 0

Then at every value of N and Z, the quantity (T;+735) approaches a constant for
large values of Ey,,. It follows that the average, (T, +T,),, also approaches the same
constant, by virtue of the fact that P(¥, Z) is normalized to unit probability. This result
guarantees that (T, +T5) terms in Eqs. (A2) and (A4) are essentially independent of g
and of Ey;,, for large enough values of Ey,,.

The quantity, |T, — T3], on the other hand, diminishes as £-! at every value of N and
Z for large values of Ey;,. One therefore must expect that the magnitude of its average,
(T —T3),, would tend to also decrease with increasing Eg;,,, unless the probability distri-
bution is shifting in such way as to alter the proportionate contributions from positive
and negative values of T; —T,. (We note that precisely such a behavior when (T, — 1.,
changes sign in the range 35 < g < 60, as indicated by the slopes of Z vs g in Fig. 3.)
Then, apart from such special circumstances, we expect that the magnitude of (T, —T;)
(and {T,—T,)) will diminish as (a large value of) Ej;,, increases.

Since Ey;,, at any given g-value always diminishes with increasing angular momentum
(as shown in Figs. 2), one expects the magnitude of (T, — T,), and (T, ~T,}, to increase
(because E,(g) is diminishing) with increasing L at large enough values of Ej,,. This
expectation together with Egs. (A2) and (A4) for the slopes of the various observables
conforms to the L-spreads actually calculated at high ¢ and exhibited in Figs. 3 through 6,

Editorial note. This article was proofread by the editors only, not by the authors.
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