Vol. B21 (19390) ACTA PHYSICA POLONICA No 7

VISCOUS CAUSAL COSMOLOGIES
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We examine a set of spatially homogeneous and isotropic cosmological geometries
generated by a class of non-perfect fluids. The irreversibility of this system is studied in the
context of causal thermodynamics which provides a useful mechanism to conform to the
non-violation of the causal principle.

PACS numbers: 98.80.Dr

1. Introduction

One of the main outstanding problems in cosmology is the so called singularity
problem. The standard Big-Bang model proposes that the Universe evolved from an explo-
sive origin, which is supposed to have happened a few billion of years ago. Although such
a model became standard in our decade, there has been an increasing number of attempts
to overcome this unpleasant situation, because for a physicist it is hard to deal with such
uncomprehensible hypothesis as a common origin of everything in our very near past [1].

Here, we are interested only in two particular examples of alternative non-singular
solutions: one, due to Murphy [2] and another one due to two of us (Salim & Oliveira) {3].
Although both these solutions do indeed lead to the avoidance of singularity (at least in
a finite distance from us), the individual behavior of each of these solutions is quite distinct.
One of them (M) is highly unstable, as it has been proved by Belinsky et al. [4]; the other
(SO) is stable in a sense which will be made precise later on. Boih solutions share another
common property: they describe geometries whose sources are non-perfect fluids. In
the last decade the interest in the study of gravitational processes involving non-perfect
fluids has been growing -considerably. Besides the property to make possible to avoid
cosmical singularity there are other complementary reasons for that: the possibility to
describe the interaction of fields of different types with gravity, the gravitational conse-
quences for systems off thermodynamical equilibrium; and so on.

* Instituto de Fisica, Universidade do Estado do Rio de Janeiro, CEP 20550 Rio de Janeiro, RJ,
Brasil.

(571)



572

The work of Belinsky et al. was considered one of the main reasons to believe in the
ineficiency of non-perfect fluids in the avoidance of the cosmical singularity. Indeed,
these authors showed that Murphy’s solution is not stable under anisotropic perturbations.
Once the Universe enters in this stage it decays almost promptly into a singular solution,
which us back to the original question. However, this is not the case, in the (SO) solution.
The reason for such distinct behavior is the use of causal thermodynamics, as will be seen
in what follows.

2. Non-equilibrium thermodynamics

Although a complete theory of systems far from equilibrium and interacting gravita-
tionally is not yet available, there are some general schemes to describe this situation
which can be accepted with a reasonable degree of confidence.

Classical non-equilibrium thermodynamics needs (besides the standard variables that
characterize the evolution of a general fluid) — the introduction of a four-vector current
S* which is assumed to be a smooth well-behaved function of the universal variables that
characterizes the fluid, e.g., the stress-energy tensor T,, and the four vector N* which
represents the current of particles. We write

S” = S"(Tap, N}.)' (1)

Let us represent by X the total amount of production of entropy. Then, the funda-
mental principle of thermodynamics implies that £ is a non-negative quantity. Besides
by the same token, ¥ must depend on the same set of variables, X = Z(T,, N,). This
is nothing but the almost direct transposition of the postulate of the continuity equation
from thermostatics to thermodynamics.

From the current of particles N* and of entropy S* we construct the quantity

1
s = _Z'N”SF’ (2)
n

which defines the specific entropy per particle. In this formula the quaatity n is the inverse
. 1 pyer
of the specific volume — . If the system is in an equilibrium state we can set N* = m*
v

and T,, = oV,V,—ph,, in which h,, = g, ,— V,V, is the projector into the 3 dimensional
rest space of V*. The specific entropy s = s(¢, v) is obtained as a solution of the Gibbs-
-Duhem equation. Note that we have introduced the internal energy pet particle through

the standard definition ¢ = i —my, and m, is the rest mass of the constituents of the
n
fluid. The states thus defined constitute a linear space E of finite dimension parametrized
1 .
by the five quantities o = % and g* = T V*, in which p is the relativistic chemical po-

tential and T is the temperature.
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In order to deal with dissipative processes we must extend such standard formalism
by introducing some new dissipative variables. In this paper we restrict our considerations
to the case in which any direct gravitational influence can be neglected. Besides this, we
will take for granted that the dissipation phenomena occur in such a scale that we can
neglect the average value of the curvature of space-time, that is (R,4,,> = 0; and further-
more we can neglect any heat fiux ¢* and anisotropic pressure n*". (Let us stress here that
such a simplification is not dictated by any thermodynamical property but it is due only
to our actual purpose here to work in spatially homogeneous and isotropic cosmological
models.) Thus, within such simplified hypothesis there is no room for ¢* and =*” to appear
in our present analysis.

We can then set

Tnv = QVqu“(pth'i'u)hyv (3)

in which p,, is the thermodynamical pressure and x represents the isotropic viscous pressure.
From the conservation of T,, we obtain

e+(e+pu+m)0 = 0.

The specific entropy s depends, in the general case, on the internal energy &, on the
specific volume v and on =:

s = s(g, v, n).

The Gibbs-Duhem generalized relation provides the evolution of 5. We adopt the
standard equations of state and set

ds 1 0S  Pa Js

o
% T’ w T o T

The parameter o, which is a function of ¢ and v is related to the relaxation time of
the dissipative processes. The quantities 7 and p are straightforward generalizations of the
corresponding variables in the equilibrium. The Gibbs-Duhem equation yields

TS = £+ pgv+ovnt. 4

The phenomenological law which describes the evolution of the dissipative variable is
obtained using the equation of balance of the entropy

St =ns+14 =2>0. 5

in which I”* is the flux of entropy.

We now move to the post-linear approximation and make the standard hypothesis
that the flux 7, depends on the same set of variables which guide the evolution of s. This
has the direct consequence that the expansion of I* becomes proportional to the heat
flux, yielding in the present case that I* vanishes. Using (4) and (5) and the form of X as
being given by:

= % (et —O)m. ©®
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we obtain for the expansion, up to the first order,

The Newtonian limit of this theory implies then that the parameter My, is given by
My, =—20,

in which y is the bulk viscosity coefficient.
We have thus achieved our goal in the form of the equation (7). Let us now apply
this formalism to the cosmical scenario.

3. The cosmic viscous fluid

We will take the geometry as being given by a spatially homogeneous and isotropic
Universe:

ds? = dt* — R*(t) (dx* —dy* +dz?). 8)

We have chosen to work in flat (Euclidean) space section to simplify our presentation
here. For the fluid velocity V*# = d§ in the Gaussian system of coordinates (8), all kinematic-

al parameters vanish identically except the expansion factor H = 2— = % Then if (8)
is to be a solution of Einstein’s equations of General Relativity, it follows naturally that
the heat flux and the anisotropic pressure must vanish. Then
T,, = eV,V,—(pu+mhy,.
The viscous pressure must satisfy the causal requirement
ftg+n = —3¢H. ©))
The remaining set of Einstein’s equations are
¢ = 3H>— A, (10a)
n+io = —2H—-3H?*+ A, (10b)

in which p,, = 2. It seems worth to remark that contrary to the case of the standard
model (in which entropy is conserved throughout the whole history of the Universe) or
like in some previous viscous models e.g. Murphy’s solution (in which, although entropy
is not constant, there is no evolutionary equation for the bulk viscosity), here we have
introduced another dynamical variable n governed by equation (9) giving origin to a coher-
ent causal scheme.

Instead of looking for special solutions of this set (9)-(10) of equations we decided
to examine the whole set of the integral curves. This is possible due to the fact that (10)
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is an autonomous planar system of differential equations in the variables n and H that
defines the phase plane (m, H).

We have
. i1 1+4
H=FH,7n)= -+ +}HH*- Tt A, (11a)
1 3¢
#=GH, )= — — — —H, (11b)

and Eq. (10a) is the definition of g.

The existence of finite singular points (that is, the points (H,, 7,) in the phase plane
in which the functions F and G vapish simultaneous) depends on the value of the cosmolog-
ical constant A. As we will see later on, the topological structure of the integral curves
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Fig. 1. P, and P, are the singular points of system (11) in the finite domain

in the neighborhood of these singular points depends on A too. However, the behaviour
at infinity is independent*of A. Just for simplicity we restrict our considerations here to
a2
3(1+2)2
there is no singular point in the finite region. Beyond this value, two distinct singular
points appear (see Fig. 1). Let us make some comments on the general behaviour of the

integral curves in the phase plane.
a2
Inthecaseof 4 < — 3—(_1—-*'1? the non existence of singular points makes the configu-
ration in the phase plane as given in Fig. 2. A solution which starts at the singularity,
in the point A, ends at the antipodal singularity A’, can have two typical behaviours. Either

the case in which & and t are constants. We set £ = 2 ¢ = constant. For A < —
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Fig. 2. Compactification of the whole plane of system (11) — Points 4, 4’, B and B’ are singular points

az
at infinite. In this case 4 < — —3—1—“1-)—2—, and there is no finite singular point

(

it rests during all its history with positive viscosity (z > 0) or it enters a region which changes
the sign of x. In this second case it can attain very high values of (negative) = corresponding
to very small values of the expansion before the entrance in the same regime as in the
first case near A4'.

The configurations depicted in the graphs are almost self evident. For example let us
make some comments on Fig. 3 in the case A = 0 and Fig. 4 for A > 0. There is practically
no distinction between the configurations in the cases A = 0 and A > 0. In these cases
there are two finite singular points: P, and P,. For A = 0, the point P; is the origin 0.
The origin is nothing but the unstable Minkowski space-time. The point P, represents

a .de Sitter Universe with expansion H = and constant .viscous pressure

3(1+4)
4(12
™= 3 awn Near the point P, we can approximate the generic behaviour of the
t
Universe by R(f) ~ exp 3 (112) . Note that such a de Sitter solution is stable against

all perturbations within the present scheme (that is, for perturbations of the system of Eq.
(11)). There is a class of cosmological models that starts at the point 4 as a singular cosmos
at past infinity and goes into the de Sitter attractor P. All these solutions have an infinite
expansion at A4 and acquire rapidly a negative viscous pressure, which is a necessary condi-
tion to enter in the neighborhood of the de Sitter cosmos P. Note that 4 and B (besides
the antipodals 4’ and B’) are singular points at infinity. At the point 4 there exists a singular-
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Fig. 3. The case 4 = 0. Note that besides the origin (Minkowski space-time) there is another singular point
) )
in the finite domain for Ho, = %

o = which represents a de Sitter Universe without

o 4 4
——— an -
1+4 30+ 4
cosmological constant. The role of A is played by the viscosity 7

Fig. 4. The case in which A > 0. See the text
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ity with ¢ = n = 00. In the case A > 0 there are two finite singular points (see Fig. 1).
Point P, does not represent a Minkowski space-time, but a de Sitter Universe which ever

3A+1)24
(\/l + —(~—) — 1) and a constant

contracts by an ammount given by H = — 5
o

o
3+1)
viscous pressure.

From the point A there is a separatrix I", which goes into the Minkowski origin O. If
a curve starts at 4 with an initial value of viscosity m higher than that of curve I, then all
these solutions penctrate the region of contraction (H < 0) and end at the antipodal
singularity A’. There are three more curves which attain the Minkowski world at O (in
the case A = 0). The curve called I'; represents a world that starts with n = —oo and

8
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Fig. 5. The case 4 = — ————— . See the text
g REvID

an infinite density. It separates the phase plane into two regions: If at B’ a curve has a value
of H bigger (in absolute value) than its corresponding value at I'; then it belongs to a class
of integral curves which represent an infinite contracting Universe which ends at the singular
point A’. The curves which near B" have smaller values of H than I';, have all the same prop-
erty: they end at the de Sitter model at P,.

Finally, separatrices I', and I', have very distinct behaviour: curve I', starts at the
Minkowski world at O and ends at the singularity 4'; curve I', starts at the Minkowski
world at O and ends at the de Sitter world P,.

For A > O there is a particular solution that starts at the infinite point 4 and ends
at the de Sitter world P,. The analytical form of this case has been exhibited recently by two
of us [3]. One can exhibit the analytical form of this solution, which has no physical singu-~
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larity:

R(t) = Roexp | 2to(L+A4) { At — Cw (L
—_ 0 p [} . 1+/{ p 270

in which C,, is a constant.
Note that any small perturbation of this geometry has the same qualitative behaviour,
ending sooner or later in the de Sitter cosmos P,. This property exhibits the main advantage

of the viscous causal mechanism of avoidance of singularity: its stability behaviour.
2

3(A+1)?
In this case there is only one singular point in the finite region. Such point represents

a de Sitter Universe, that is generically unstable although having in the phase plane a do-
main of stability. The analysis of the curves is, in general, similar to the precedent cases.

In order to complete the analysis, we depict the case where A4 = in Fig. 5.
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Fig. 6

Finally, let us point out that for 4 > 0, there is a possibility of the appearance of
classically forbidden regions in the phase space. Such regions are characterized by ¢ < 0
(see Fig. 6). Thus P, for instance, which represents the unstable de Sitter Universe, is not
a physically satisfactory solution as well as all remaining curves situated inside the region
_ shadowed in Fig. 6.

Editorial note. This article was proofread by the editors only, not by the authors.
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