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Gauge fields of the translation group are suggested in order to describe nongravita-
tional deviations from Newton’s gravitational law.

PACS numbers: 04.90,+e

The hypothesis of the fifth fundamental interaction has arised because of current
verifications of Newton’s gravitation potential [1, 2]. The translation group gauge model
of this interaction was suggested [3, 4]. Our aim here is to consider its geometric aspects
and Lagrangians.

Let AX be the fibre bundle of affine repers over a space-time manifold X*. It is the
principal fibre bundle with the affine structure group A(4, R). For the sake of simplicity,
AX is believed to be trivial. Provide the total space P = tl AX of AX with coordinates
{x", «, Sh}. Here x* are coordinates in X*, 4° are parameters of the translation subgroup
T, of A(4,R), and S4 are coordinates of the reper {St,} with respect to the holonomic
reper {0,}, where {t,} is the fixed basis for T, and S is an element the subgroup GL(4, R).
On P, the group A(4, R) acts by the law

(G5, 87): {x", u*, &} - {x", (G " +¢", S}Gy).
Note that {x*, u* = Shu"} are coordinates in the total space of the affine tangent bundle
AT(X).
Let a general affine connection be given in AX. Given the above mentioned coordi-

nates, its connection form w and the corresponding horizontal fields t* (i.e. w(z") = Q)
on P read

@ = (S”HXSE+ I, (x)Sdx) I+ (du® — BY(x)dx")T,,
LIy}
Tb = T“(X) (—a-g +B“(X) -a;a- —'FM(X)S; aS;) . (1)

Here I}, T, are generators of the group A(4, R), I';, are coefficients of a linear connection,
and B; = S;B, are gauge fields of the translation group T,. Physical treatment of B faces
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difficulties because matter fields are sections of fibre bundles with linear structure groups,
not affine ones. The way out, in our opinion, is pointed by the successful physical utilization
of spatial translation gauge fields in the theory of continuous media [S].

Treating u like displacement vectors, let us consider the following mapping ¢ of the
space P onto the total space Q = tILX of the linear frame fibre bundle LX over X*:

0:(x*, u’, 87) = ((x, u'(x) - 5% 1), 0, SDs.cua=uexy = (x*, 0, SP).

Here y(x, u, S) is the geodesic defined by the linear connection I through x in the direction
u, and u(x) is some section of the fibre bundle AT(X). The map dp of the tangent bundle
T(Q) over Q transforms horizontal fields (1) on P into the fields

v \/ a 13 & a
Ty = (%) (5 + D u"(x)) [ﬁ — I (x)S; —é—s—i—] )
on Q where
D u(x) = 3,u’(x)+ (%)~ Bj(x) = o}(x) 3)

is the covariant derivative of fields u(x). Remark that fields (2) are horizontal with respect
to the linear connection I'.

Comparing a general case of ¢ and Jg with those in the particular case B = 0, u(x) = 0
we may say that, in a sense, these mappings define deformation of a manifold X* charac-
terized by a dislocation field B(x) and a displacement field u(x). A field u however is always
removed by gauge transformations. Therefore, only its covariant derivatives (3) can make
the physical sense. For instance, o, = —B; under the gauge condition # = 0.

Let @ be some tensor field on X* and f,, the corresponding tensorial function on Q.
We shall say that ¢ is defined on the deformed manifold X* if differentiaton of ¢ is given
by the expression

(D) (v) = (df,) (zp);

where }, is the horizontal lift (2) of a field v = 7*(x)d,. It follows that, in the field theory,
deformation of a space-time manifold can be described by replacement of familiar co-
variant derivatives D, in the exterior differential dx”D, by the quantities

5,, = (0, +0,)D, = H,D,.
For example, the Lagrangian of a scalar field ¢ takes the form
Ly, = 3 [g"H;H 0,90, —m’¢].
The action ﬁmétional and the equation of motion of a point mass read
S = —myg [ (g HLH u"u") 2 ds,
ut

‘:i's— +J ;‘,u"u" =0, @
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where quantities I* look like Christoffel symbols of the “metric” g,, = HiH’g,,, but ds
is defined by the true metric g. A Lagrangian L,, of an electromagnetic field is constructed
by means of a modified tensor of strength HyH’F,,, and a Lagrangian of a gravitational
field L, is constructed by means of a modified curvature tensor HjH/RS.

A Lagrangian L, of translation gauge fields B; cannot be built in the Yang-Mills
form because Lie algebras of affine groups admit no invariant nondegenerate bilinear
forms. To construct L,, one can apply quantities o, and D,s, where, in view of the defi-
nition of g, the connection I' acts only on the upper index of ¢;. Only the combination
F; = D0y, is then possible. The general form of L, is

L(c) = ’%(aleva“"’*'az nch‘p""'aSvacFm‘
+ a8 FF,,,— pove,+ iala)),
where 0,, = g,,05. It seems natural to require that the component .'I‘(‘Z,‘)’ of a metric energy-
-momentum tensor of ¢ should be positive. This requirement imposes the following con-

straints :
d=0, a, >0, a,=0, a;+2a,=0, p>=0, i<inp

on constants of L. The Lagrangian L, then reads
Ly = 7 [8,F 0, F™ + a,F ,, (F*"° —2F™"")— pa)jo,, + Aoka)).
Matter sources of a field ¢ are the following: a short canonical energy-momentum
tensor of matter fields

oL, - 0L, -

3o = H Dy aD:q)’ = (H™)up(tmu+ 5L,

a short metric energy-momentum tensor of an electromagnetic and Yang-Mills fields,
and a curvature tensor —x~'H, R} of a gravitational ficld. We can however, replace this
gravitation term by the term in the right hand side of Einstein’s equation. The equation
for o then takes the form

FYo dc*"
—(H™ )Ly +H Np(Toru—3 8Ty)- ®
We restrict ourselves to a weak field o, that is, we neglect the gravitational field and

the torsion on the left-hand side of equation (5) and the field o on the right hand side
of this equation. We have

HH Tyt 80 |

oL, . .
50_5,,) = al("nva F :n_apF:v)"'zaza'(F [pv]a+F lnv)"Wﬂv+Muvaa'
In the case of a free field o, taking into account the relation

v L)
oo™

0 = _ﬂa'auv +}.6,,o' = 0, (6
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one can, bring ‘equation (5) into the

4a2ai(wm,v + Oy e _a)n,u) + 2ala)at[v,;;]a — U, = 0, (7)
i .
a, [nﬂ--—l] [n,_u, Oe—e,,]+2a 1Doiv,upa — Heuy + A8 = 0, (8)

where e,, = 30,,, and ©,, = T oy, (¢ = ¢7) are symmetric and antisymmetric parts
of g respectively. It seems natural to choose the solution w = 0 of equation (7). Equation
(8) then can be written in the form

p—Af — (1—42
e“‘v = y nme-—m ”-1 e,“., >

L pp—4d)
C 3a,(u-A)

Oe+mie=0, )

This equation admits plane wave solutions

H—A 1—44\ p.p, ; 2 2
€y = 72— o e a(p)e’™, =m’.
o 3 (”‘“' (p-—l) p‘z) (Pe P

Note that, in general case, the divergence (6) is not equal to zero and is not a gradient
quantity. It follows then that u # 0. ' '
Let a matter source of o be a motionless point mass M. In this case, the right-hand
side of equation (5) is
_'% "nvM 5(,")"

and »_t,his equation admits a static spherically symmetric solution given by the following
expressions

1
e, = — ~———A(3leoo +%' M&(r)), €Co9 = ""eoorz, €ap = ,—_eo()r2 sinz‘ 0'
I“_
10 ,0 2 1 u
— — I’ —ego—m’epy = —% ———x M(r),
2o’ 5yt 00 K‘al(ﬂ—).) (r)
uM ™

fo0. =~ 6a,(u—4) r

Substituting this solution into equation (4), we obtain the modification of Newton’s gra-

vitational potential
. + kM ) k" lu
= €po=——|1— ———e .
P = 9T gar \ 3a,(u—12)
Note that, to contribute to standard gravitational effects, the fifth fundamental inter-

action must be as universal as gravity, so its matter source can be represented by a mass
or other parts of the energy-momentum tensor. This interaction must be described by
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a massive classical field, though its mass may be unusually small. The translation field
gauge model fits all these conditions. For example, the mass (9) is expressed by means
of constants of the Lagrangian L,, where u and 1 make the sense of coefficients of “elas-
ticity” of a space-time [3, 4].
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