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The interaction matter-radiation is modeled by a harmonic oscillator in a rotating
magnetic field. Recently discussed resonance phenomena involving the simultaneous ab-
sorption of several photons are detected in our model and described without the use of per-
turbative procedures. In some aspects this model is an alternative to the widely used rotating
electric field model. '

PACS numbers: 03.65.Sq

1. Introduction

One of the fundamental subjects in Quantum Physics has been the interaction between
electromagnetic waves and a bound system. A theoretical treatment of this process should
basically include the quantization of both, matter and radiation. However, a lot of know-
ledge is achieved treating the incident field from a classical point of view (semiclassical
approximation). The motion of a charged particle in the external electromagnetic field
is described by the standard time dependent Hamiltonian:

2
H(t) = —1— (i— - A(x, t)) +V(x, 1), )

where ¥(X, ) and A(X, t) stand for the atomic binding forces as well as for the external
radiation. In this frame, the monochromatic radiation is usually represented by a plane
wave of frequency w. Consistently with Einstein’s idea, the resonance phenomenon should
occur when ho = E,—E, (E, > E,)), with E,, E, corresponding to the energy levels of the
bound system [1] and the atom ionizes only if hw > ¥, V¥, being the ionization potential.
However, all this is valid only for not too strong radiation and in the lowest order per-
turbation calculus.

As recently found, for high intensities of the external field the behaviour of the system
can be distinct [2-7]. Here, an atypical ionization takes place with the energy of the photon
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lesser than the ionization potential, seemingly involving the collective absorption of several
photons (multiphoton ionization [2-4]). Moreover, the energy spectrum of the ejected
photoelectrons shows unexpected features [5-7]. For a wave interacting with an atomic
system, if @ is not too high and the wavelength 4 = 2nc/w is much larger than the typical
size of the atom, these facts have been qualitatively described using just the oscillating
(or rotating) electric field to represent the linearly (or circularly) polarized electromagnetic
waves (the so-called “dipolar aproximation” [8-11]).

An alternative model of the external radiation has the form of a rotating magnetic
field [12-13). Such fields can be locally created close of the nodal points (the points in
which the electric field is null) of some standing waves. Qur present aim is to complete
the sketch by considering a bound system interacting with a rotating magnetic (instead
of electric [10—11 14)) field. For simplicity, we take as the bound system a harmonic
oscillator. Of course, the oscillator does not admit ionization. However, it has proved
successful to describe the resonance. We are going to show that, contrasting with the
oscillator in a rotating electric field, our elementary model predicts some forms of excita-
tion, analogous to the multiphoton resonance.

2. The physical origin of the rotating magnetic field

To explain the physical sense of our model, we shall consider below 2 class of ap-
proximate electromagnetic potentials appearing in Maxwell-Faraday theory (when the
retardation is neglected) and involving a homogeneous time dependent magnetic field:

AG 0 = —5rxB@. @)

The subject of this note is the case of (2) when B(#) just rotates in a fixed plane with
a constant angular. velocity @:

B(t) = B(n cos ot+msin of) = Bn(t) 3)

The ﬁelds of type (2)—(3) can be locally created by an ordinary magnet rotating wnth
not too hlgh frequency .. However, there exist more mterestmg cu‘cumstances in which
such fields arise. We refer to the physical situation produced around the nodal points of
electromagnetic standing waves. Following [12—1 3}, consider the electromagnetic standing
waves (described by the vector potential A%, 1)

—- - . - . (1):9’; o
A;3(x, of) = Ansin — sin ot, “4)
c
where 7, 5 are two orthogonal unit vectors and. A eR the wave amplitude. Taking the
“antisymmetric combinations”’ 7
A[,, 3 ](x, wt) = T(A,, ;(x, ot)— Az (x, wt)) (&)
of (4) and superposing them we can obtain the standing wave of more complex structure:

ARX, 1) = Az, o)+ Ag %, ot—n/2)
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L~ . osx . omx
= —3 A{| msin — —s5sin —— J cos ot
c

c

~ . onxX . . OsX\ .
+ (s sin — —n sin —‘-‘-) sin wt} . ©)
c c )

The wave (6) contains the following subset of the nodal points:
RN = {X = A m+Lm+15):1, L, 1, =0, +1, £2,...}. Q)
In a neighborhood of each of them (for |F| < A/2 where [F| measures the distance
from a point of N), the electromagnetic potential (6) can be aproximated by:

- Ao | 4 e o
A(r, t) = —% — {(m(sr)—s(mr)) cos wt
c ]

+(5(r) —n(5P) sin ot} = —LFx B(r) ®)
where B(r) is given by (3) with
B = Awjc. )

The electromagnetic field (2)(3), (8)~(9) has some interesting properties in itself
which have been studied elsewhere [12-13). Below, we ‘shall examine the influence of
such a field on a bound quantum system.

3. Harmonic oscillator in the rotating magnetic field
As our bound system we choose the harmonic oscillator with the binding potential:
V() = 1 mojr. (10)

Suppose the oscillator is situated in the external radiation field (6) so that its atraction
center is in one of the nodal points (7). If the wave length A of the wave (6) is larger than
the average radius g, = (h/2mwe)/? of the ground state of the oscillator, the evolution
of the wavepackets trapped in vicinity of r = 0 will be well described by the Hamiltonian
(1) with A(x, t) taken from the rotating field model (8). After a brief calculation

1 /. e. .\ -
H(t) = ;';(p+ z—cpr(t)> +1 moir?
1 . . Ao o u s
= 2—m(pz+a2rf_(t))—- ;‘n(t)M+~lf moir?, (1)

eB . . . . Y - -, -
where a = 5 n(t) is the unit vector in (3), M = rx p is the angular momentum and
" .

r.(t) is the component of 7 orthogonal to 7i(f). From now on, we shall forget about the
underlying heuristics and we shall treat the Hamiltonian (11) as a dynamical quantum
model in itself. As can be easily seen, our model is exactly solvable:
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4. Explicit solution in the Heisenberg frame

The evolution equation for the evolution operator U(f) reads:
p _
r U(t) = —iH@U(2). 12)

Without losing generality, we can suppose that the magnetic field rotates around
the z-axis and the vectors n, m in (3) lie along x and y axes respectively. The first step to
solve the evolution problem (11)-(12), like in [12-13], will be the transition to the rotating
frame. By substituting

U(t) = exp (iotM )W (1) 13)
the evolution equation for W(¢) is simplified to
d
7 W(t) = —iGW(1), (149
where G is the time independent generator
1., (4 2 2 2,1 n2e2 O
G = — p*+45 | — +mag | (y° +2°)+5 mogx®— — M, + oM, (15)
2m m m

representing the evolution “as seen in the rotating frame”. Since G is time independent,
the formal solution reads W(t) = e~ "%. Due to the quadratic nature of G, various mathe-
matical formalisms are available to solve effectively (14)—(15) (e. g. the coherent state
formalism [15-18]). One of the most transparent technics consists in reducing (14) to a
matrix equation, which arises for the time dependent images of the 6-canonical operators

qg= |i’§ in the Heisenberg frame [12-13, 19-20]:
ax0) = WO W) = g™ (j=1,...,6) (16)
The corresponding Heisenberg motion equations
d
Py 4,0 = [iG, q/] : an
t
lead to the c-number matrix equation for the 6 component vector g(t):
d
— q(1) = Aq(t 18
7; 90 = A4( ) (18)
with the matrix A having the explicit form:
0 - 0 1/m 0 0
o 0 ajm 0 i/m O
0 —ajm 0 0 0 1/m
= . 9
4 —mawj 0 0 0 -0 0 (9)
0 —(@*m+mol) O , w 0 a/m
0 0 —(@*m+mod) 0 —a/m O
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Therefore, the canonical trajectories (16) convert in
q(t) = ¢q (20

and the corresponding trajectories in the original non rotating frame are obtained adding
to (20) a permanent rotation around the z-axis with the angular velocity w.

5. Stability and instability domains

The global character of the trajectories (20) depends on the algebraic type of the
6x 6 matrix A4 [12, 21], determined by the roots of its characteristic polynomial D ,(2).
A direct calculation leads to

D (%) = Det (A—A) = 04(q), ’ (21)
where ¢ = A%/w? and A(g) is expressed
A(0) = * +(2+ 3w +40P)0? + (1 + 302 + 4 w? +3wHo + (1 —w?) (@2 +w? —w?), (22)

. d a eB
with w = wofw an oz—-—m;—zmcw
parameters «, w. Hence, the types of trajectories will be labelled by the points of «-w plane.
The form of (21)+(22) shows that this plane splits into 5 open regions, corresponding
to trajectories of definite types and to definite algebraic properties of (22). These regions
are divided by threshold curves for which the character of the trajectories is unstable
and undergoes a qualitative methamorphosis.

The first region Q, is the one where the Cardan’s discriminant C(x, w) of the polynom:al
(22) is positive:

. The roots of 4(¢) depend on two independent

Q, = {(x, w) e R*: C(x, w) > 0}. (23)

In this region, two of the 6, roots are genuine complex conjugated one to another while
the third one is real negative. Henceforth, the eigenvalues of D ,(4) have the form +iw|a|'/2,
+w(0,)'? and +w)(03)'/2. The resulting Heisenberg canonical trajectory has a diverging
part (the deconfinement of the oscillator under the influence of our rotating field)!. Thus,
Q, is a resonance region. The boundary 9Q, is formed by an algebraically defined curve
C(o, w) = 0 drawn in Fig. 1.

The next region of interest (2,), is the one in which one of the roots of 4(o) is positive
and two are negative, say

g,6, <0 and o,>0. (24)

The region 2, can be analytically characterized by noticing that the product of the
three roots of A(c) is positive, implying:

Q, = {(@, w):1l < w < (1/2+(1/4+a*)H13}, (25)

! On the level of classical theory it means that except of a subfamily of measured zero all canomcal
trajectories exponentially diverge.
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Fig. 1. Division of the -w plane according to the kind of motions produced by the generator matrix A.
The two shadow regions £, and 2, host the deconfined motions (resonance area) while the rest of the
plane is the confinement domain. The region £2, possesses features resembling the multiphoton resonance
(the oscillator absorbs N photons to jump M energy levels with N > M) while in {2, the relation is apparently
inverted (the point in which Q, touches the w-axis suggests an excitation in which bigger quanta produce
double energy jumps). The band 2w, < © < 2.4677 w, shows a curious type of resonance in which high
intensities of the magnetic field produce the resonance but the further increase of the field makes it disappear

For (a, w) € Q,, the characteristic polynomial D (1) has four purely imaginary roots
+aw(o)V?, +w(o,)!/?, corresponding to the circular mode of the Heisenberg canonical
trajectory and two real roots +w(0;)'/2, one of which is positive and henceforth defines
a diverging mode. Thus, Q, represents again a resonance. ,

On the threshold curves, forming the frontier of Q, and @,, the character of the trajec-
tories is unstable.

The rest of a-w plane split into three disjoint open domains (see Fig.1). In each of
them, A(c) has three distinct negative real roots, i.e. D,(4) has six purely imaginary roots,
and the corresponding points (a, w) define the bounded (trapped) motions.

The plot-of the stability and resonance regions in Fig. 1 shows some curious facts
which differ our model from the traditional semiclassical theory of an oscillator driven
by either a rotating or oscillating electric field e.g. V(x,?) = —E,xsinwt. In fact, the
driven oscillator can reflect to some extent the resonance phenomenon, but the excitation
depends only on the parameter @ and is not sensitive to the field intensity (consistently
with the spirit of the traditiopal Einstein’s photoeffect theory).
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The oscillator affected by our rotating magnetic field behaves in a different way.
Here, the resonance (instability) arises along a continuous threshold in a-w plane depending
on the field intensity and not on w alone. The phenomenon’s dependence on the param-
eter w = wofw would correspond to the “traditional resonance effect”. while the de-
pendence on o = (e/2mc) (B/w) represents the “distorsion of the doctrine”. For small «
(weak field intensities), our plot still reproduces the standard resonance pattern (the
resonance occurs in very narrow intervals around @ = w, and @ = 2w,. A slight novelty
here is that the model seems sensitive to the absorption of “bigger quanta”, sufficient
to jump exactly two energy levels). When o increases, however, the pattern changes and
the resonance bands start to extend involving frequencies which should not cause the
excitation according to the traditional criteria. In case of very high @ (@ > w,), our rotating
model has merely an academic sense (it-cannot reflect the behaviour of the oscillator in
the nodal point of a standing wave because the oscillator states are “wider” than the
“validity length” of our nodal aproximation). However, when  is comparable with wo
(long waves affecting relatively compact oscillator states), it can describe adequately the
resonance of the system in a standing wave. Thus, in vicinity of w = w, it yields a decon-

Fig. 2. Two examples of excitation for atypical frequencies. a) A slowly expanding classical trajectory

illustrating the resonance in the special frecuency band 2wg < @ < 2.4677w,. The resonance effects do not

appear for either too low or too high field amplitudes. b) A quickly diverging trajectory for the oscillator

with wy = (3/2)w in the rotating field of frecuency w = 10*¢/sec, tematively interpretable as a resonance

with the absorption of 3 photons to jump 2 oscillator levels. The electron departs from the oscillator center

with the initial velocity =~ 10* cm/sec. The applied field intensity is B = 2.047 x 107 Gauss and the param-
eters @, w define a point in the resonance region £2,

finement (resonance) for w < w, (Fig. 2b), to be interpreted as the multiphoton resonance
(the resonance produced by the absorption of N photons to-jump M energy levels, where
N> M [2-9, 11, 14]).

The interval between w = w, and @ = 2w, is “no resonance band” (curiously,
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no resonance appears no matter the rotating field intensity). In turn, the band @ > 2w,
(w < 1/2) hosts still more curious phenomena. In the sub-interval 20, < @ < 2.4677w,,
too small field intensities as well as-too high field intensities cannot cause the resonance.
However, the medium value fields are able to excite the system in spite of w # 2w, (Fig.
2a) suggesting a-kind of multiphoton absorption with N < M. This kind of resonance
(i.e, which appears for high intensities but disappears again for still higher field intensities)
has never been detected in theoretical models involving the rotating and/or oscillating
electric forces 2 {2-11, 14]. For @ > 2.4677w,, the picture simplifies again: there is no
resonance if « is small but it appears and persists for a crossing an instability threshold
(however, in this band the adequacy of our rotating model to describe the oscillator in
the radiation field is no longer granted). It is curious that for the high rotating field inten-
sities the resonance in this band. requires the frequencies in fact exceeding 2w, (as if the
“photons” of a strong standing wave could not cause the two-level oscillator jump without
having some energy excess).:

6. The canonical structure of the G-generator

Our description, until now, concerns the canonical trajectories (both, classical and
quantum). It might be interesting to notice that their behaviour is related with the distinct
forms of the Floquet Hamiltonian (15). This fact will be made explicit below by applying
an extended version of the method used in [12], which gives different results in distinct
regions of the 2-dimensional space of parameters (a, w).

Consider first any point («, w) outside of the threshold curves of Fig. 1. The generator
G (15) then defines a diagonalizable matrix A with 6 different eigenvalues:

A =4 Re(A) >0 or Re(l)=0 and Im(L)>0 (k=1,2,3). (26)

In the 6-dimensional space of canonical variables henceforth exist the 6 eigenforms
., 3 :
€ > €

efd=Mel; e A= —le 27
which permit to define the 6 scalar operators 4, , 4,

A = (s A = (D) (28)
obeying the following commutation relations with the generator (15):

[G. 4] = —ikdy; [G, AC] = iddl @

2 This, in fact, is one of the most interesting aspects of the deconfinement phenomenon discussed here.
It makes impossible all too s1mphstlc interpretations of the semiclassical resonance, in a sense that the electric
field associated with the rotating B(t) for high field intensities becomes so strong that it “nullifies” the
original classical field of the oscillator. An impossibility of similar interpretations follows also from the
existence of the no resonance band 12 <w <1,
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and commuting between themselves according to:
[AS, Af] =47, 471 =0,
(4, A; 1=nd; (el (30)

1t turns out that the operators 4 define a general canonical decomposition of the
generator G in (15). Below we shall use the following extension of the lemma 2 from [12].
Lemma. If the matrix A is diagonalizable and its eigenvalues are non degenerate, the Flo-
quet Hamiltonian (15) admits the representation:

3
G = k; (=) Calv)AL A + 80, (8 €R). (1)

Demonstration. Denote:
3
80=G= ¥ (=) (Wfrdi 4;.

Due to (29), (30), g, commutes with all the 4,7, 4,". Then, g, commutes with all the ca-
nonical variables X, p and therefore g, €R. »

Depending now on the region of a-w plane, some particular cases of the decomposition

(31) can be distinguished.
1. Suppose first that (x, w) is in one of the three confinement regions of Fig. 1. This case
is similar in many aspects to that extensively discussed in [12]. The polynomial (22) has
3 distinct negative roots g, (k = 1, 2, 3y and the roots +4, of (26) take purely imaginary
values +iw, (0, = ® ﬁ‘:D- As a consequence, one can choose e, = (e;)* and the op-
erators AF become hermitian conjugated 4,7 = (4;)* yielding the quantities y, in (30)
real.

Note that the eigenforms e, and the corresponding operators A, are still defined
with accuracy to constant multipliers and allow the freedom of renormalization e — I'ye,’,
ey = I'*e; and A} - I A}, Ay — I',*4;. By choosing the renormalization factors
I, so that I [.* = 1/|y.| one reduces the commutation relations (30) to:

[45, 471 = [4c, 471 =0,  [Ag, A]] = sign (y)dy,- (32)

The direct calculations show that sign (y,) = —sign (y,) = sign (y3) = 1 and since
A = (4] )*, the Floquet Hamiltonian G in (31) takes on the simplified form:

G = 0, ATA, —0, A3 A, + ;AT A5+ 2o, (33)

where we have put 4, = A" .

The signs in (33) imply that G is not positively defined (there exist eigenstates whose
eigenvalues are negative) and does not have the energy interpretation. However, it helps
to construct the stationary wave packets in the form of “squeezed states”, in full analogy
with [12].

IL. Consider in turn («, w) in the deconfinement region Q, of Fig. 1. The polynomial
(22) now has one negative root ¢, and two genuine complex roots o, 63 (6, = g3*).
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Consequently, the matrix A has 2 pure imaginary and 4 complex roots of the form:
1 = ii(‘)l, iC’ i‘C*, (34)

where 0, = o/ |6,], { = w(e)"? = n+iv,n = Re{ >0, v = Im{ # 0. The eigenforms
ef can be now choosen as e,, e}, e,, e_, ¢}, e* where:

ed = —iwge, €A = +ioel, e d=tle,, eA=il%. (35
The 6 scalar operators (28) therefore become:
Ay =(e10), AT =(ela), Ay =(erq), AL =(elg) (36)
.and satisfy the commutation relations:
[G,4,] = ~0,4,, [G, A]] = +w 4],
[G,4.] = FilAds, [G,AL] = Fil*4%. (37

The only non vanishing commutators (30) are [4;, AT], [44, A-], [4%, A*] and by
choosing an adequate normalization they become

[A, A7) =1, [A4,,4.]=1, [4% 4%]= -1 (38)
henceforth, reducing G to:
G = 0, ATA, +ilA A_—il*A%A* +g, (g, €R). (39

Now only the first term in (39) has an evident oscillator form w,4}4, = (0,/2)(Q?
+P}?). To understand the structure of the remaining two, substitute:

Ay = (As+AD)2+i(As — AD(2i) = (p4 +ip- )2,
A = (A_+AD)2+i(A- - A%)/(2i) = (g-+ig,)//2 and c.c.. (40)
Thus:
G = 0 ATA ~0(P-q-+P+4:)~V(P+q-—P_q4+)+g = G +G,, (41)
where G, G, are two commuting terms:
Gy = 0, ATA; ~v[H(P+ +4-Y +(P-— 4. —(P-+4.)* —(p+ —q-)), (42)
G, = —n/H(P++44) ~(P+—4.)* +(P-+9-) —(P-—4-)) + g0 (43)
To interprete G,, define:
A, = (P4 +4)2+i(p-—q )2 = (@ +IPN/2,
A3 = (P-+q.)2+i(p+ —q-)2 = (@3 + P3)/y/2. (C)
Hence:

G, = 0 AYA, —VvASA, +VvA3A,, “5
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where the non-zero commutation relations obtained for the set A4, A}', (j=1,2,3) are
just conventional, [4;, Aj] = 1.

In turn, the operator G, is equivalent to the Hamiltonian of a 2-dimensional repulswe
oscillator. This can be seen by introducing the new operators:

Pz = (P++q+)/\/2s Qz = (P+—Q+)/\/2,

Py =(p-+42 03 =(p-—a )2 (46)
which reduce G, to the form:
G = —n[2(P3— 0 —n/2(F3~0)). @7

Notice that the “attractive part” G, and the “repelent part” G, commute. Henceforth,
the unitary evolution operator in the rotating frame admits an easy decomposition:

W(t) = e—itG = (e—ith) (e—itGl). (48)

The evolution in the Schrodinger frame is easily interpreted by selecting as the initial
wavepacket one of the eigenstates of the “attractive part” G,: G, ¥ = A¥. Then:

e~HOP = (7 (o~ iCry), (49)

As can be observed, the “attractive part” G, just produces a phase factor while the
repelent part carries out its destructive function. The final result will be the “explosion”
of the wavepacket in 4 of the 6 canonical directions, determined by G,.

1. Finally, let (x, w) be in the deconfinement region 2,. Now, 4(c) has 2 negative real
roots (o, 0;) and one real positive o3. The 6 eigenvalues of A (two of them are real)
acquire the form:

A= Fiw,, Fio,, o, (50)
where w, = © v T;,J k =1, 2,3. The corresponding eigenforms obey
e d = twsey, ed= —ine, ed=+ioeg (k=1,2) (51)
and the associated scalar operators
Ay =(exq), Ac=(a9), 4 =9 (k=12 (52)
satisfy the commutation rules:
[G,A:] = Fiwzds, [G, 4] = -4, [G, 4] = +0df (k=1,2). (53)
Furthermore:
[Ap AT =1, [ApAf]=1, [A,A]=i (54)

Note that A, and'A_ are hermitian. Due to (53), (54), they provide the following
decomposition of the generator G:

G = 0,474, + 0,434, + 034, A_+8 (8 €R). | (55)
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The crucial term is now:"

Gy = w34, A4_. (56)
Denoting this time: -
Q3 = (4, —AIN2 Py =(4,—4)J2 (57)
one sees that G5 is a repulsive oscillator:
G; = (03/2) (P3-Q3)- (58)

Consistently, in the eyes of the rotating observer the Hilbert space # of Schrodinger
wavepackets will split into the tensor product of the Hilbert spaces of three onedimensional
oscillators # = L*(R) ® L%(R) ® L*(R). Two of them will be confining (atractive) while
the third one will produce an explosion of the wavepacket in the two canonical directions
(57) defined by the repulsive generator G;. Since our rotating field (3) approximates the
field of the electromagnetic standing wave (6) in vicinity of a nodal point, it looks that
G, reflects a kind of coherent multiphoton resonance caused by the standing wave.

Note that a canonical form for the quadratic generators was considered by Leach,
who has proved the existence of a time dependent unitary transformation reducing any
time dependent generator H(f) quadratic in x;, p, to a time independent oscillator Hamil-
tonian (called the “archtypal form” [22-24]). The construction of Leach, while more
general, in a sense “is too strong” for our purposes: his final “archtypal generator” is
not the Floquet Hamiltonian and is not sensitive to the stability and/or resonance aspects
of the motion. In contrast, our canonical transformation is much less general, but the
canonical forms obtained (31) reflect well the stability thresholds.

With all reservations concerning the semiclassical theory, it thus looks that our model
describes one of rare situations when the multiphoton phenomena admit an exact des-
cription on purely quantum mechanical level.

The author is indebted to Pr Bogdan Mielnik for his helpful and critical remarks
and to all Colleagues at the Physics Department of CINVESTAYV in México for their
interest in this paper and pertinent comments. A kind support of CONACyT in form of
the fellowship H8-962 is also acknowgledged.
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