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1t is proposed that the existence of the space-time manifold with its pseudo-Rieman-
nian geometry is a result of a connection in the bundle of frames of a larger fundamental
manifold together with choice of a cross-section in such a bundle. No theory is formulated,
but various aspects of the construction are discussed for two different local structures of
the fundamental manifold: R5 and C4. ‘

PACS numbers: 04.50.+h

Introduction

A fundamental aim of contemporary theoretical physics is to unify the forces of
nature in a single account. Most theoretical physicists working towards such a goal would
agree, that a proper understanding of the nature of space and time is most likely the
all important key to a successful completion of such a program. Rosen writes [1]: “The
space and time of immediate experience are no longer taken as composing the fundamental
abstraction. Instead they are regarded as themselves merely extrinsic, topological manifesta-
tion of a higher-dimensional continuum unknowable by direct intuition.”’ Indeed, hardly
anyone still believes today that the space-time continuum as we know it from the general
theory of relativity can be used also to describe the interior of the elementary particles.
A search for the fundamental continuum and its relationship to the observable space-
-time constitutes one of the most interesting and challenging directions in the contemporary
theoretical physics.

Historically, the first step in that direction was the original Kaluza-Klein theory [2, 3]
with its fifth dimension suitable for a unified description of gravitation and electromag-
netism, Since then, the dimension of the fundamental continuum grew significantly in
order to accommodate other interactions within the unified system. The dimensions which
are not macroscopically observable are usually hidden by means of compactification,
compressing them at an extremely small scale. In some theories the compactification occurs
spontaneously as a result of solving the fundamental equations [4]. Hundreds of papers
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were written about the subject and a considerable progress made. From time to time
a completion of the unification program is announced. In fact, there are members of
public who actually believe that a final unified theory of everything already exists. Within
the scientific community, however, most people would say that we are still a long way
from an obviously successful conclusion of this particular step in the development of
our knowledge of the world. Hence it is justifiable to continue the search for the funda-
mental continuum and its relationship to the observable space-time.

In most theories in which the fundamental continuum is mathematically a manifold,
space-time is its submanifold. In other words, the space-time manifold with various pro-
perties like linear or affine connection, metric etc. is used as a foundation onto which
the extra dimensions and supplementary structures are added. It might be, however,
that by approaching the problem in such a particular way we are missing a chance to find
the true unified geometric picture of the world, because the space-time with its dimension,
metric and other properties might exist only due to the special way in which we carry out
the macroscopic observations. Take away the observqr, and the fundamental continuum
may not contain anything like the space-time manifold. The present paper explores possible
ways how to implement such a particular philosophy. The fundamental geometric system
is assumed to be a manifold with a linear connection. The observer: is identified with
a choice of a cross-section in the bundle of frames of the fundamental manifold, i.e. a
smooth choice of a frame for each point of the manifold. How the macroscopic properties
of the space-time are deduced from such a picture is described in Section 1. A precise
mathematical formulation of a similar construction has been presented in Ref. [5], but
here the stress is on the basic philosophy of the idea rather than on an abstract formulation.
In Sections 2 and 3 which go beyond the content of Ref. [5] concrete examples of the
fundamental manifolds are considered. In Section 2 the fundamental manifold is assumed
to be locally R®. It appears that Einstein’s vaccuum equations have a rather natural
place in such a geometry. Section 3 discusses some implications of the fundamental manifold
being locally C*. Such a model has an obvious advantage of containing fields with trans-
formation properties of Dirac spinor ficlds as an integral part of its geometry.

1. An extension of the role of the observer

The role of the observer in the classical theory of relativity shows a way to its possible
extension. Although the fundamental continuum of the general relativity is a four-dimen-
sional real -space-time manifold, it is not directly observable. General coordinates of the
manifold do not even distinguish between space and time, while in any direct observation
such a distinction is clearly made. In other words, to describe the space-time manifold
in terms of the general coordinates x*, one needs to set up a system of Lorentz frames
described by the tetrads h}" (x)'. A particular choice of the frames depends on the observer,
with frames at the same point of the space-time manifold connected by the action of the

! Greek indices are used for general coordinates, while the directions in the tangent MkaWSkl
space are denoted by Latin indices.
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Lorentz group. Although theoretically all frames are accessible, there exists.a clear practical
difference between spacial rotations and space-time ‘“rotations”, i.e. Lorentz boosts.
While there is no practical limit 1mposed on the spacial rotations, only a rather narrow
range of the Lorentz boosts parameter t/c can be reached in the normal practice of space
and time observations. It is conceivable that there exist further rotations whose range
is so narrowly limited in macroscopic observations that for all practical purposes local
frames at every point may be regarded as fixed as far as the additional rotations are con-
cerned. Yet, these rotations may play an important role. Namely, they may be- observable
when one shifts from one point of the fundamental manifold to another, measuring the
discrepancy between the actual frames and parallelly displaced frames. In other words,
they might be our only key to register translations. In more mathematical terms this
may be described as follows. : :

Consider a bundle which is locally M x G, where M is a manifold of dimension n > 4
serving as the base manifold of the bundle and G is de Sitter group. A connection in such
a bundle can be defined in terms of the horizontal lift [5].

xX® = a—a“ —-A”(x) s 1)
where x* are local coordinates in M, and W;; = — W, i,j = 1,...; 5, are the right in-
variant vector fields in G. For i,j =1, 4 the fields W,; span the Lorentz algebra,
while Wi, i = 1, ..., 4, corresponds to the addmonal rotations. A gauge transformation?
characterized by matrices b}(x) belonging to the de Sitter group leads to the transformation
of the connection components according to

A = b +@,bDbig", @
where g¥ = diag(1, 1,1, —1, +1).
Restricting the gauge transformation to the Lorentz subgroup leads to the transfor-
mation
AY = hAY, 3)

which is identical to the transformation of tetrads A, (x) in the usual general' relativistic
description of space-time. Hence when it is possible to choose a coordinate system in
M in such a way that

AP, p=1,..,4,form an invertible matrix and
AP =0, p=5..,n : C))

functions A,‘,S, u=1,..,4, can be up to a multiplicative constant used as the tetrads
on the submanifold of M defined by fixing all corrdinates x3, ..., x". Functions A:{, I
=1,...,4,4j=1,...,4, serve as the components of the connection. The Christoffel

2 In other words a change of the reference cross-section 1dent1fy1ng the identity group element on
each fibre of the bundle.
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symbols can be obtained by the usual relation
r:v = th:;’h',‘g,k—(a,,hZ)hf, ) (5)

where A7 is the inverse of matrix A4} and the summations are from 1 to 4. Eq. (5) ensures
that the connection defined on the submanifold in this way preserves the metric
g;w = h:thvigij'

The construction uses the fact that the non-commutativity of generators W5 has
no effect on the interpretation of A/ and 4. Only the Poincaré-like commutation rules

(Wi, Wis] = guWis— gaW;s 6)

are needed. Thus even a flat Minkowski space is described by a non-flat connection in
the original bundle. When the bundle is in fact the bundle of frames of the base manifold,
the curvature has a limiting influence on possible global structures the base manifold may
assume. This, in its turn, affects the global structure of the constructed space-time. So
even though the construction works in an abstractly defined de Sitter structured fibre
bundle [5], the interplay between the geometry of the base manifold and that of the con-
structed space-time is promising to lead to many interesting questions. That is why in
this paper the starting point will always be a linear connection in the base manifold
and not just a connection in a de Sitter structured principal fibre bundle as in Ref. [5].
Global questions, however, will not be discussed here.

2. Real five-dimensional base manifold

Consider a five-dimensional manifold with general coordinates X*u=1,..,5,
and a connection in its bundle of frames reducible to a de Sitter group. Let hf‘, =1 ..,5,
i=1, ..., 5, be the five-frames with respect to which the connection has de Sitter com-
ponents Aj{. This case will be used mainly as an illustration of the construction described
in Section 1, hence only the simplest way of constructing a pseudo-Riemannian four-
-dimensional space-time will be considered. Nevertheless, it is interesting to see Einstein’s
vacuum equations to emerge naturally in the process.

Let x* be the extra unobservable coordinate and so put

AY =0, i,j=1,..,5. Q)

The induced tetrads of the space-time submanifold are given by
i5 1 i 8
A“ = 7 h“, . ( )

where / is a fundamental length.

The five-dimensional frames will be chosen in such a way that the fifth coordinate
separates from the rest and their 4 x 4 restriction is equal to the tetrads of the space-time
submanifold :

hS=0, p=1,.,4 hi=0, i=1,.,4, hi=1 and
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hi = same as in Eq. (8),
bp=1,..4. 0))
Assuming that the linear connection in the five-dimensional manifold is torsion free,

7, = oI = T35 = Wdl'g, or =gt =K (10
selecting gss = 1. Eq. (10) leads to an exponential dependence of the space-time metric
8., = h.hig, (all indices only 1 to 4) on x°. In this way the original manifold is foliated
into a family of 4-dimensional space-times differing from each other only by a scaling
factor. We might live in one such space while the triviality of the horizontal lift of §/ox®
(Eq. (7)) prevents us from crossing into the other spaces. From Egs (5) and (10) we can
get the following relations for some Christoffel symbols

1 1 (] [ ]
F:v= —78,”’ ng=r‘v’5=—l—6v’ 1"55=F§,=F35=F§5=0 39

. (the indices u, v, o range 1 to 4).
Then using the usual formula for the Ricci tensor

ore, aors

uv
y = —= +rg ré,—-rere 12
[ axv axo'_ . l‘?r ) (] ( )
we obtain
4
Rys = ok R,;s = R;, =0, _ (13)
@) 4
R,, = R/ + Tz— v MY=1,..4 (14)

where Rf,t) is the Ricci tensor for the space-time submanifold. Eq. (13) is a part of a tensor
equation

4 .
R#v = _li_ Suw wy=1..,5. (15)

If Eq. (14) represents remaining components of the same equations, then R(Y = 0.

3. Complex four-dimensional base manifold |

To describe quantum behaviour of fermions one has to use complex vectors with
SL(2, €) acting on them rather than real vectors with the usual Lorentz SO(3, 1). SL(2, ©O)
is a larger group with a natural homomorphism map from SL(2, C) onto SO(3, 1). Since
SL(2, C) is connected with micro-phenomena while macroscopic observations use SO(3, 1),
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one might expect the fundamental continuum to have a direct relationship with SL(2, C),
while the introduction of an observer should lead naturally to the loss of the doublevalued
character of SL(2, C) in macroscopic observations.

Let us assume that the base manifold is a four-dimensional complex manifold with
a connection in its bundle of frames. Complex manifolds with linear connections are
described in a book by Yano [6], but the use of non-coordinate bases, general components
of the connection and their gauge transformations are not discussed to a large extent.
The basic structure will be, therefore, described here.

An n-dimensional complex manifold can be described using 2n real coordinates x*
and y*, u = 1, ..., n, or, alternatively, complex coordinates z* = x*+iy* and * = xt— iy~
In general, the structure group of a linear connection in such a manifold is Gl(n, C), the
group of nxn invertible complex matrices. The right-invariant vector fields in Gl(n, C)
can be expressed as

d —_—
W‘ = W: and Wa = W:——‘__ .
’ awh ’ oW

(16)

where wj are the complex matrix elements and w,, are their complex conjugates.
Given a referénce cross-section, a connection in the bundle of frames can be defined
by a horizonatal lift of o/dz* B

-9
z® = P — AS ()W)~ B,a,(z)W" an

together with the complex conjugate
F) —_—
Z® = a (Z)WE— A% ()WL, (18)
oz
If a gauge transformation characterized by a z-dependent complex invertible matrix w§(2)
is performed, the components of the connéction transform according to
jzb = “:-Aﬁdwg‘*‘“:(apwg), é:b = u:Bcdeg‘*' u(Gzw), : (19)
where #4(z) is the inverse matrix of wj(z), and d; denotes 6/62"

When the connection is reducible to a pseudo-mutary subgroup characterized by
a real diagonal metric g,, it is possible to write the horizontal lift as

.0
Z¥ = P — A(2) Wy (20)

where
Wba = gch:— gnchC’
and the correspondence with Eq. (17) is by

A:b = A:cgcb’ B:b = "'A:cgcb' (21)
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The real representation of the manifold with its connection in terms of coordinates
x* and y* is obtained by

o _2 @ o (o @ @
ox* 9 g o \o ozt ;

together with the corresponding relations for the horizontal lifts.
If the connection components satisfy

| AP = 47, 3
the horizontal lift in the imaginary direction becomes trivial

~ 8
YP=i@ZP-ZP) = W (24)

According to the basic proposition of the present paper only the real n-dimensional
submanifold is then observable. It is thus of particular interest to study four-dimensional
complex manifolds. Moreover, the obvious choice of the metric is

g = diag (1,1, —1, —1), (25)

since group U(2, 2) contains both de Sitter groups. The condition (23) can be also written
as

A28+ AL g% = 0. (26)

In the matrix form with 43, being elements of matrix 4, and £°® elements of the Dirac
matrix 7, Eq. (26) implies that A,y, is a skew-hermitian matrix., Such a condition is
satisfied by the sixteen matrices iy, iy, ¥s = YoV1Y¥2YV3s ¥s¥i» and il

The four-dimensional real submanifold of the complex base manifold is given a local
Riemann-Cartan structure by the connection components of the form

A, =5 Ao+ —17 hive), 27
where 4 = — A% and K} are the Lorentz components and the tetrads respectively.

Under a Lorentz gauge transformation 47 and k;, transform in the expected way.
At the same time, the original complex tetrads of the base manifold transform as the
Dirac spinor fields. Thus the original geometry is based on the so-called double valued
representation of the Lorentz group, while in the macroscopically observed space and
time this extra structure is lost as the real representation is obtained from the adjoint
action of the group elements on the generators of de Sitter “translations”.

There is a curious point of contact between the present construction and quantum
mechanics. One of the accepted peculiarities of quantum mechanics is the fact that even
an electron at rest, presumably a structureless pafticle, needs a fast oscillating function
of time for its description. Could this be connected with the macroscopic observation
of time ? Consider a connection that in some gauge describes a flat space-time using Minkow-
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ski coordinates. Tt means that

; ,
A, = Tt A= 0,1,2,3. (28)
Let us assume that in some other gauge the time dimension becomes unobservable, i.e,

= 0. What gauge transformation connects the observational gauge with svch a special
“timeless” gauge From Eq. (19) it can be seen that in the matrix form the gauge trans-
formation satisfies

i
7 yow+0ow = 0. 29)

Thus the four columns of w happen to be the Dirac fields describing the four states of
a spin 1/2 particle (and antiparticle) with mass 1/ at rest.

4. Conclusion

The purpose of the present paper was to show a possibility and to some extent also a
plausibility of a construction which allows the properties of the observable space-time
to result from the use of a specific gauge in a bundle of frames of a larger manifold. If
such mathematical model corresponds to the reality, then any physical theory should
be constructed as a fully gauge invariant geometric theory in the fundamental manifold,
while its spacial and temporal characteristics reveal themselves only when the specific
gauge can be, and is, selected. The theory of gravitation could especially benefit from
such an approach, since many problems of general relativity, like the difficulties concerning
energy-momentum tensor, singularities, quantization etc., are closely connected with the
fact that the physical fields and space-time geometry are too intert¥imed. This prompted
the rise of numerous theories which are trying to disentangle the two aspects, e.g. by
using the background and the effective metrics [7]. The proposition presented here could
eventually serve a similar purpose. It goes, however, one step further, since what is classi-
fied as “effective” is not only the metric, but the whole space-time manifold.

The case of the base manifold being locally C# is especially inviting further investiga-
tion. There is a chance that the very existence of fundamental spin 1/2 particles could
be related to the existence of regions in the base ‘manifold with a geometry that does not
allow the existence of the observational space-time gauge.
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