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Recent data on factorial moments are analyzed and found to follow regularities ex-
pected from a negative binomial (NB) multiplicity distribution. A linked-pair approxima-
tion for the r-particle rapidity correlations, proposed by Carruthers and Sarcevic, is proven
to lead to muitiplicity distributions of NB-type in small rapidity windows. From the general
theory of stochastic processes, we deduce that the random nature of hadron production in
small phase space cells closely resembles that of a completely chaotic (gaussian) system. The
latter is shown to be phenomenologically equivalent with the Carruthers-Sarcevic ansarz
for two-particle correlations of exponential (Lorentzian) shape.

PACS numbers: 12.40.-y, 05.45.+b

1. Introduction

Two aspects of multiparticle production have attracted much attention in recent years:
a) the widespread occurrence, over a large energy range, of the negative binomial distri-
bution (NBD) found to describe well (charged and negative) particle multiplicity distri-
butions (MD) in full and in restricted domains of phase space, in lepton, hadron, and
nucleus induced reactions, and in e*e~ annihilations, [1]; b) the observation of sporadic
large density fluctuations in small phase space cells. Multiplicity fluctuations in a given
(pseudo) rapidity interval might reveal so-called “intermittent” behaviour as put forward
by Bialas and Peschanski [2-4].

In a) the observable of interest is the multiplicity distribution, parametrized as
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where {(n) is the average multiplicity, k is a parameter related to D? = (n?)>—<{n)? = {(n)?
(1/<(n) +1/k). In b) attention is focussed on the dependence on Jy of the normalized
factorial moment

Fpy =<n(n=1) ...(n—r+1)>[{n", 2

of the multiplicity distribution, where 8y is a (pseudo) rapidity interval of decreasing size,
down to the experimental resolution!. Intermittency is characterized by a power-law

CFpyoc(0p)™, ¢, > 0; 3

with singular behaviour for 8y — 0 and typifies a dynamical system exhibiting selfsimilarity
down to some smallest scale.

It is often claimed that intermittent behaviour (3) is now firmly established in a variety
of processes [5]. Experimental data indeed show an approximately linear dependence of
In{F,> on (In 1/dy) for decreasing Jy in a typical interval 1.0 > éy > 0.1. However, several
authors have recently pointed out that the measured effects, at presently attainable exper-
imental resolution, can be understood from conventional short-range order, supplemented
by reasonable assumptions on r-body correlations (r > 2), and do not necessarily reveal
novel dynamics [6-8]. Interestingly, the “standard” models such as FRITIOF [9] and
the Dual Parton Model [10, 11] for hadron collisions, and the Lund shower model for
ete~ annihilations [12] cannot fully reproduce the observed dy dependence of <F,) [13, 14].

Until recently, with the exception of Ref. [15], little attention was paid to the link
between a) and b) although both merely study different aspects of the same observables:
the multiplicity distribution is small regions of phase space. As we show below, closer ex-
amination of the factorial moment data from several experiments leads to a number of
interesting observations.

Firstly, the powers ¢, extracted from the data obey regularities expected from a neg-
ative binomial distribution. Also the absolute values of (F,> agree reasonably well with
those derived from a NBD, when {F,) is used as input. This suggests that the multiplicity
distribution remains of NB-type, at least approximately, down to the smallest dy intervals.

Secondly, inspired by the results of Refs. [7, 8] we demonstrate that the multiplicity
distribution in a small domain 4 of phase space tends, under quite general conditions, to
a negative binomial for 4 — 0, if the rth-order correlation functions C(yy, ¥3,...,y:) obey
a simple factorization ansatz in terms of Cy(y,, y2), the two-particle rapidity correlation
function. This result, which rests on the importance of two-particle range correlations,
could explain why the NB-phenomenology is so successful in a variety of multiparticle
processes ranging from “clementary” e*e~ annihilations to complex nuclear collisions.

Finally, we point out that the proposed factorization approximation follows nat-
urally from the stochastic nature of particle production if the random process is, at least
in small regions of phase space, of gaussian type.

1 In practice, and for reasons of statistics, a suitably chosen rapidity interval is subdivided-in M
intervals dy and (2) is calculated as a double average, first over M intervals and then over the event sample.
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2. Definitions

Let L(yy, ¥2,.--,y,) be the inclusive probability density for producing r indistinguishable
particles with rapidities y,, y,,...,y, and consider a rapidity interval?> 8y. The factorial
moment F, is defined as:

F,.=(n(n—=1)...(n—r+1))
dy oy dy
= [dy, [ dys . [ Ay d{y1s ¥2o oo V- 4)
4] 0 0
The F, are related to F, in (2) by
F, = F,|F;. )

Let C(¥1, y2..---¥,) be the r-particle correlation function, related to 7, via the standard
(Mayer and Mayer) cluster decomposition [16, 17]:

L) = G,
I(y1; y2) = Ci(y )C1(y2) +Ca(y15 ¥2)5 (6)

We assume the functions C, to be invariant (stationary) under a shift in rapidity and
thus restrict our discussion to a single interval 8y centered around y = 0. Stationarity
implies that the C, are effectively functions of (»—1) rapidity variables since the rapidity
origin may be fixed. The r-fold integral of C, over an r-cube of size dy defines the factorial
cumulants (Mueller’s moments) [17]

dy ay

~ 3y
f" = g dyl (.‘; dy2 e (.Edyrcr(yl’ Vas oo Yr) (7)

Explicit relations between F, and 7, are tabulated e.g. in [18] for r < 10. We further intro-
duce the factorial moment generating function, Q(s), of the multiplicity distribution P,(n

=0, 1,...) given by:
Q) = Z(I—S)"P,. =1+ Z ("r'f) F, ®
n=0 r=1

where F, is the factorial moment (4). The factorial cumulants f, are defined by the power

expansion of In QO(s):
In O(s) = Z ('rf) 7. ©)
r=1

2 The following expressions are valid for any set of kinematical variables; we here consider c.m.
rapidities for simplicity.
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For a negative binomial multiplicity distribution, we find from (1), (8) and (9)

Q"(s) = 1 +s<ndlk)™", (10
F, = (1+1/k) A+2/k) ... (1 +(r=1)/K), (11)
fi=@=-DYK?, ‘ (12)

with F, = F,/{n)" and f, = f,/(n)’" the normalized factorial moments and cumulants,
respectively. Note that Fy = f; = 1. The second order normalized factorial moment
satisfies the relation [19]:

dy 3y
I dy, I dy2Cy(y15 ¥2)
F, = 1+ 2 13)
[6‘. d}’I1(.V)]z
1
=1+ %’ (14)

where the second equation is valid for a NBD. The second term on the right-hand side
of (13) is often written as R(0, 6y). This two-particle correlation function has been exten-
sively studied in various interactions over a very wide range of c.m. energies (see e.g. [20~
—24] and Refs. therein). ‘

For symmetrical c.m. rapidity intervals centered around y = 0, the multiplicity distri-
bution is known to be well described by the NBD [1]. In this case, and for small 8y, we
have:

1/k = R(0, 6y). , (15)

This simple relation gives a natural physical meaning to the k parameter in the NBD.

3. Factorial moments and thg NBD

The multiplicity distributions in central (pseudo) rapidity bins |y| < y, are now meas-
ured in many types of interactions. For Ve > 0.2 (6y > 0.4), they are well described by neg-
ative binomials [1]. Multiplicity data in still smaller intervals are available from intermit-
tency studies in several experiments [5]. Although such data are, for fixed dy, averaged
over a rapidity interval of several units, it is interesting to discuss factorial moments, and
their Jy dependence, under the hypothesis that the multiplicity distribution remains of
NB-type down to the limit of experimental resolution. To this effect, we take the measured
{F_) (or the slopes ¢,) as input, and compare <F,) (r > 2) with the values derived from
(14) and the NB-relation (11).

The data from the KLM collaboration [25] for p-Emulsion interactions at 200 and
800 GeV/c, and for *°0 — Emulsion at 60 and 200 GeV/nucleon are shown in Fig. 1.
The full lines are published linear fits; the dashed lines are here calculated from (11) and
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Fig. 1. Data of the KLM collaboration [25]; (a-b) p+ emulsion at 200 and 800 GeV/c. (¢-d) **O+emulsion
at 60 and 200 GeV/nucleon. Dashed lines are derived from a negative binomial, using F, and the slopes ¢,
as input, solid lines are experimental fits

the published values of ¢,. The NBD predictions for the slopes ¢,{r > 2) essentially coincide
with the experimental ones. For the 10 — Emulsion data, the absolute values deviate
slightly for r = 5.6.

The WAS80 10+ C data [26] at 200 GeV/nucleon are shown in Fig. 2. Here, the
{F,> (r > 2) (crosses) are calculated from <F,) in every dy interval. The agreement with
the data is quite striking>.

Fig. 3a shows the /s = 600 GeV data of UA1 [27]. The NBD ”predictions” for
the slopes ¢, are clearly consistent with the data. The absolute values of (F,) are known
to be less well determined, due to experimental biases, and are smaller than the predictions.
We have also examined moments in azimuthal bins, where the biases are well under con-
trol'*. They follow Eq. (11) very well (not shown).

Although we cannot derive definitive conclusions from the factorial moment data, in
view of the bin-averaging involved, it is tempting to assume, as a working-hypothesis,

3 The Wa80 collaboration has recently announced that the published data may be biased and are
being reanalyzed. Unless the agreement with the NBD is purely accidental, Fig. 2 indicates that the expected
biases are probably léss important than thought.

4 private communication from B. Buschbeck.
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Fig. 2. Data of the WAS80 collaboration [26]; crosses are derived from a negative binomial, with {F,) as
input; dashed curves from (22) with (y,, &) = (0.19, 0.4) (a) and (y, &) = (0.11, 0.35) (b); predictions based on
(33) coincide with those shown
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Fig. 3. (a) Data of the UA1 collaboration [27}; dashed lines as in Fig. 1; (b) Data of the UAS collabora-
ration [37] for symmetric pseudo-rapidity intervals around # = 0; curves as in Fig. 2
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that the multiplicity distribution remains of approximate NB-type down to the small-
est phase space domains presently investigated. The data certainly suggest that the hier-
archy of slopes (¢,) is fixed by ¢, in those cases where a linear dependence of In (F.> on
(—In éy) is appropriate. Little additional information is thus gained from the higher-or-
der factorial moments which, in any case, are very sensitive to experimental biases and
statistics. More importantly, the wide occurrence of the NB, combined with the above ob-
servations, means that the multiplicity distribution in small phase space cells is effectively
controlled by F, and, therefore, by the two-particle correlation function. Consequently,
higher-order correlations must possess a well-defined structure in terms of C, and C,,
as we shall further argue. ,

With respect to NB and intermittency’ phenomenology, it is instructive to translate
the well-known trends of two-particle correlations regarding energy-, charge-, and &y
dependence to those of the 1/k parameter in the NB and of the factorial moments. This
has already been emphasized in [6, 8, 28]. Another detailed investigation, combining inter-
mittency and correlation data with QCD cascading, is presented in a recent paper by Ochs
and Wosiek [29].

4. Higher order correlations and the NB

The widespread occurrence of the negative binomial implies a very speclﬁc type of
multiparticle correlations®. In particular, two-particle correlations must play a promi-
nent dynamical role, at least in small domains of phase space. In this, hadronization
dynamics strikingly resembles many other areas of many-body physics where the dynamics
is often well described by nearest-neighbour or two-body interactions only.

In hadrodynamics, little is known about correlations beyond two-, and three-pamclc
effects. Three-particle rapidity correlations have been investigated in several hadron exper-
jiments [20, 30, 31] and found to be either absent or much weaker than those among par-
ticle pairs. While one may be tempted to assume that all C, (and therefore the factorial
cumulants) vanish for r larger than some arbitrary number, this assumption is invalid,
as was shown e.g. in [32]. To reconcile the simple correlation function structure suggested
by the NB-data, with the need to include higher orders, it is necessary to invoke a ““closure-
-relation”, a technique familiar e.g. from the theory of liquids [33].

This idea has been recently explored by Carruthers and Sarcevic [8], and is also
implicit in the work by Capella at al. [6, 7). It is quite remarkable that a simple closure-
-relation, the linked-pair structure of Ref. [8], indeed leads to approximate negative binomial
multiplicity distributions in small phase space domains, as we now demonstrate.

Consider the normalized factorial cumulants in a region of phase space 4 and let
4 = 0. If we require the multiplicity distribution in 4 to be a negative binomial, then,
from (12)-(15) we note that f, has to satisfy the relation

fi=@E-DIR"L (16)

3 .Cf. the “clan-concept” introduced in [19].
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with R the average of the normalized two-particle correlation function in 4. Relation
(16) implies that; as 4 — 0, the higher-order correlation functions C,(r > 2) must fac-
torize into (r—1) factors C, and contribute (r—1)! identical terms. An explicit expression
with this property is proposed in [6] and [8]. Generalizing slightly the authors’ arguments,
we assume the following “linked-pair” structure for the reduced correlation functions:

cr(.Vl’ Y25 .oy yr) = Cr(yl’ Y25 .- yr)/cl(,"'l) Cl(yr)’
s(V1s Var ¥3) = €2(¥1, ¥2)€2(¥2s ¥a) +€2(¥15 y3)e2(ya, v2),
(Y15 Y25 Y35 Ya) = €2(¥1, y2)e2(¥2, ¥3)ea(¥3s ya)+cycl. perm. (17)

Stationarity of all ¢, implies that we may fix the position of one particle, say particle 1.
The expression for ¢, then has exactly (r—1)! terms, equal to the number of cycles of r
objects [34]. From stationarity, we further have c,(yy, y,) = ¢;(y,—y,) and ¢,(y) = con-
stant. With (17) and (7), and for 8y — 0, we recover (12) with

dy oy

1/k =”5‘ gcz(}’b y2)dydy,, (18)

under the condition that the integral exists.
In [8], cx(ry1, y2) is written as:

(¥, y2) = 72 exp (— |y —y2l/©), (19)

¢ being the inclusive two-particle correlation length. With this parametrization, one finds [8]:

Fy = 1+y,[(1—exp (—8y/£)/(3y/5)], (20)
and

Ji@y) = (r—DI(F,— 1)~ (21)

This expression is of the form (16) and thus corresponds to a negative binomial. However,
(21) is an approximation of the r-fold integral (7), valid for 3y — 0 only. The linked-pair
ansatz does therefore not yield an exact negative binomial.

For finite dy and ¢, given by (19), the integral (7) is evaluated exactly in [6]. The nor-
malized factorial cumulants take the form

fo = (r=Dly;7'B,(x), (22)

where the B, are known functions of x = 8y/¢ only; for x — 0, B,(x) — 1. The form of (22)
is valid for any function c¢,(y,, ¥,) = y:h(ly: —y.|/E) which is free of singularities at the
origin. The factorial moments are easily derived from (21)-(22), using the relations
between f, and F, given in [18].

Relations (21)«22) adequately describe the dy dependence of F, in several NB and
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Fig. 4. (a) Normalized factorial moments derived from (22) (solid curves) and from (11) (dashed) with
F, from (22) fory, = 1;(b) the moments F,-Fs from (22) for indicated y, values. Curves calculated from (33)
coincide with those shown

intermittency data sets. This was shown, in a somewhat different way, in [6] where ete-,
up and hadron data are compared to (22), and in [8] where (21) is used to analyse the
UAS (546 GeV) and NA22 (22 GeV) data®. The same data are discussed, and well described,
in [35] in a quantum-optics context, using a mixture of coherent and chaotic fields.

Equation (22) expresses the factorial cumulants, and thus the multiplicity distri-
bution in Jdy, as functions of y, and dy/¢ only. The latter property was called “B-scaling”
by Fowler et al. [36]. The factorial moments F, dre plotted versus -— In (6y/¢) (for y, = 1)
in Fig. 4a (full curves). The dotted curves correspond to the NB-approximation calculated
using f, from (22) and expression (11). Deviations from a NB are small for dy /£ < 1.
Fig. 4b compares the dy/¢ dependence of F,-Fs for various y, values. The derivatives for
fixed r clearly increase with y, in the region —2 < —In (8y/¢) < 1.

We now return to the data shown in Figs. 2-3. The dotted curves on Fig. 2, derived

¢ In {8), the factor (r—1)! in (22) is not used but replaced by a7~ ! and a, is adjusted to the data. The
authors find a3 = 1.3, a4 = 1.6, as = 2.8 at 4/5 = 22 and 900 GeV From Eq. (21) we find a; = 4/2
= 1.41, 2, = (6)!/3 = 1.82, as = (24)!/4 = 2.21, evidently energy independent, and close to the fitted values.
In [6], the normalized factorial cumulants are written as f; = A,B,(&y/é‘), the parameters A4, are adjusted
to the data at dy = 1, separately for each order r.
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from Eq. (22) with (y,, &) = (0.19, 0.4) (Fig. 2a) and (7, &) = (0.11, 0.35) (Fig. 2b) re-
produce well the 6y dependence and the absolute values of the moments”.

In Fig. 3b we compare (22) with the UAS5 central pseudo-rapidity data [37] using
(y2, &) = (0.54, 3.26) and (y,, &) = (0:71, 3.63) at 200 and 900 GeV c.m. energy, respec-
tively. The agreement is again excellent, not only for small éy, but also for the larger central
intervals.

The successful linked-pair ansatz leading to (22), offers a natural and simple explana-
tion for several trends seen in intermittency studies, as summarized in [5].

e The factorial moments are not power behaved in the dy range investigated until
now, but at most in a restricted region; the “slopes” ¢, clearly depend on the chosen fit-
-interval. ' ‘

@ Inspection of the two-particle (pseudo) rapidity correlation data at SPS, ISR and
CERN collider energies shows that the inclusive correlation length ¢ is slowly increasing
with /s (see e.g. [20, 24, 38] and Refs. therein). Larger ¢ at fixed 6y means (compare Fig. 4)
smaller “slopes” @, as /5 increases. This is observed e.g. in the UA1 apalysis [27]. Similarly,
selection of (semi-inclusive) data samples with larger average multiplicity {n) implies
smaller ¢, since y, is known to decrease rapidly with increasing {»). This is also seen in [27].

‘e Little is known about two-particle rapidity correlations in ete~ annihilations. The
TASSO data [39, 40] show stronger correlations (larger y,), but of possibly shorter range
(smaller &), than in hadron collisions at comparable energies. This results in a stronger
éy dependence of the factorial moments, and larger ¢,, as experimentaily observed [14].

e The hierarchy of the slope-values in different types of collisions (decreasing from
ete~ to A+ A) is often discussed in terms of the degree of complexity of the interactions.
While this connection may seem attractive in a theoretical context, our analysis indicates
that a straightforward comparison of two-particle correlations (or of y, and ¢ in our
formalism) may be physically more transparent than a naive comparison of bin-averaged
factorial moments or effective slopes. Furthermore, as (22) reveals, factorial cumulants
rather than factorial moments should preferably be studied.

o The models FRITIOF, DPM and the Lund Shower model for ete- fail to describe
the “intermittency” data {13, 14]. This observation came as a surprise and is partly the
reason for the current interest in intermittency-type analyses. From a model comparison
in hadron collisions [41, 42], it is easily seen that the model failures find their origin in large
discrepancies between the measured and predicted two-particle correlations. The strength
(y.) is severely underestimated and the predicted correlation length (&) is too large by
a factor 1.5 to 2. Recalling Fig. 4, this explains why the predicted slopes are several
times smaller than measured®. The disagreements seem less severe, at first sight, for ete-

7 Note that the correlatior lengths & & 0.4 are considerably smaller than in hadron-hadron colli-
sions at similar energy (£ & 1-1.5). If confirmed by a direct analysis of the two-particle rapidity correlation
functions, it would suggest than an ultra-short range component is present, possibly related to enhanced
Bose-Einstein effects. A preliminary NA22 study of correlations in hadron-nucleus interactions, however,
shows no-evidence for “abnormal” short-range effects (private communication from A. M. Endler).

8 The UAS cluster Monte Carlo (GENCL) [43] is in much better agreement with the NA23 data
correlation data [41] and may therefore describe better the intermittency data.
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anpihilations. On closer inspection, however, is it seen that the Lund Monte Carlo underes-
timates R(y,, y,) at small 6y by a factor of ~ 1.5 and overestimates the correlation length
[39]. 1t is likely that these shortcomings are not due to the manifestation of novel dynamics
in the data, but related instead to the absence, in the present Lund string hadronization
algorithm, of effects such as heavier resonance states and possible resonance-interference
phenomena.

5. Multihadron production: a gaussian stochastic process?

The linked-paif structure of the (reduced) correlation function ¢, was shown in Sect.
4 to lead, under quite general conditions, to approximate negative binomial multiplicity
distributions in phase space cells of the order of, or smaller than, the typical short-range
correlation length. The “particle counting™ statistics in this model is fully determined by
the second-order correlation function. This property a priori suggests that multihadron
production may well possess characteristics similar to those of a stochastic process of
gaussian type.

The theory of gaussian random processes is a well-known branch of mathematical
statistics and treated in many textbooks®. The theory may be formulated in various different
but equivalent mathematical forms. A purely classical, probabilistic treatment was first
used in studies of random noise encountered in radio-physics [45, 46]. A quantum treatment
was fully developed for quantum optics via the P-representation of the optical-field density
matrix [47]. Here, the gaussian approximation describes thermal light and lasers below
threshold. In quantum-field theory, the gaussian approximation is closely related to the
so-called Random Phase Approximation [48].

The quantum optics results have been translated (see [49-51, 36] and Refs. therein)
or adapted {52, 53] to hadron physics by several authors; a probabilistic treatment of
stochastic point processes [54] has been successfully used by Capella and Krzywicki [55].

To elucidate the connection between the empirically derived linked-pair ansatz and
the structure of the correlation functions in a general gaussian stochastic process, we biefly
recall the main ingredients of the theory and summarize, without proof, its main result.

Let II(y) be a complex random field of a set of variables denoted by y, (we take y
to be c.m. rapidity for simplicity) so that the average over an — as yet unspecified — ensem-
ble, {{II(y)|*), equals the inclusive particle density at y in a collision. HI(y) is assumed to
be statiopary: {/1(y)> = {II(0)) = constant. A stochastic process is completely determined
if the joint probability of the set of random variables {/I(3)} for all y in an interval (0-Y)
is known. Alternatively, it is fully described by the set of field correlation functions

rr’ = (H‘(Yl)ﬂt(yz) H‘(yr)ﬂ(yr+ I)H(yr+2) H(yr+r')>‘ (23)
The function

G(y15 ¥2) = Gy 1(yy, y2) = II*(yl(y2)), (24)

® A general review of the theory with maty practical applications and extensive refercnoa to the
original literature can be found in [44].
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plays a fundamental role and is called the “coherence function”. The inclusive r-particle
densities are defined as the ensemble averages

Ly ¥2 o y2) = QIR ... ()2 25

They are the analogues of the r-fold intensity distributions in optics. Now, assume the
complex random variable IT(y) to be distributed according to a gaussian law. In this
case, all higher-order field correlation functions can be expressed in terms of the coherence
function G(y, y,) = G(y,—y,) and (25) takes the form [34]:

r

Ly Yoo cos ¥0) = Z H G(,Vp ij)7 (26)

P j=1

where the sum runs over all permutations P : j — Pj of the integers j = 1,2,...,r. With the
standard cluster expansion of I, in terms of the correlations functions C,, one finds [34]:

Cr(yl’ Y25 -e05 yr) = ;]]:[1 G(.Vj’ ij)’f (27)

where the sum now runs over all cyclic permutations C of the integers j = 1,2,...,r, and
contains (r—1)! terms. For r = 2, 3, 4 we have (in abbreviated notation):

C2(y19 Yz) = |G(1’ 2)'27 ‘ . (28)
Calyis ¥2, ¥3, ¥8) = G(1,2G(2, 3)G3, 4)G(4, 1) +cycl. perm. (30)

With C, as in (19), (24) has the form

G ~ exp —(ly,—y,!/20). _ 31

The hadronic equivalent of the optical coherence length is thus twice the usual two-particle
correlation length in rapidity. The above equations illustrate a fundamental difference
between the linkedpair structure of Eq. (17) and the correlations in a gaussian stochastic
process. The former are expressed in terms of C,, the latter in terms of the coherence
function G. Moreover, only “ring-graphs™ are present in the gaussian model'®. Unlinked
pairs (e.g. of the type G(l, 2) G(3, 4)Aare absent by the nature of factorial cumulants.
With (28)-(30), the normalized factorial cumulants of the multiplicity distribution in the
interval (0-Y) are derived in [34] and found to be:

Y

Y Y r )
fi= ; fdyifdy,...§ dy; II1 G(y;—yc;)- (32)
)] 0 ji=

0

10 An identical result holds for the Random Phase Approximation.in many-body theory [48].
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For a Lorentzian shape as in (31), they have been calculated by several authors [56, 46]
and take the form: :

fo = (@—D'B(B), (33

where the B, are functions of f§ = 6y/2£. They are tabulated e.g. in {56].

The resemblance of equations (33) and (22) is striking. It is easily verified that the
Jy dependence of f,, for G of the form (31), is identical in both models for r = 2, 3. Differ-
ences appear in the expressions for higher orders but are numerically small (< a few
% for B > 1 and negligible for < 1). Consequently, for two-particle correlations of Lo-
rentzian form, we find that the gaussian approximation and the linked-pair structure lead
to an essentially identical form of the correlation functions in phase space cells of size of
the order of, or smaller than the hadronic correlation length.

As could be expected from the outset, the simple, one-component gaussian process
yields a Bose-Einstein multiplicity distribution in the limit dy — 0. Indeed, the factor
y5~!, present in (22) is absent from (33). To recover the successful NB-phenomenology
with k > 1 and stay as close as possible within the present framework, one may follow
the approach of Ref. [55] (see also [49]) and assume that the “observable” stochastic field
II(y) is the sum of a (random) number of m “clementary” chaotic fields. If these fields are
statistically independent and have identical average properties, the resulting multiplicity
distribution is- a convolution of {m) identical Bose-Einstein distributions i.e. a negative
binomial with k = 1fy, = {(m)!L.

Although the validity of the last arguments would merit further discussion, we believe
that the main result of this section has more general validity than the specific model from
which it is derived. Indeed, from the particular structure of higher order correlations in

“multihadron production processes, as revealed by the data, we are led to conclude that
the hadronic field strongly resembles a gaussian, i.e. completely chaotic (complex) field.
This is likely to be the basic common ingredient, shared by the plethora of models, which
aim at a description of the multiplicity distribution is small phase space domains.

6. Summary and final comments

Many experimental studies of a large variety of high energy multlhadron processes
have revealed that the multiplicity distribution in restricted domains of phase space, is
quite well parametrized by a negative binomial distribution. The recent “intermittency”
data on factorial moments also show regularities consistent with a NB down to the (pre-
sent) limits of .resolution in rapidity.

The fact that the NB occurs, either approximately or exactly, in a large variety of
models, including QCD parton cascades at high energies [58-61] a priori raises the suspicion,
as often in many-body physics, that its origin is rooted in quite general, and probably
not too discriminative properties of hadronization.

11 A closed form for the generating function, valid for finite Jy, and a recurrence relation for the
probabilities P, can easily be derived from the formulae given in [57]
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Combining experimental observations with ideas borrowed from recent phenomeno-
logical analyses, we have searched for a structure of multi-particle correlations which yields
approximate NB-behaviour in small phase space cells. The linked-pair approximation,
proposed in [8] satisfies this condition. Moreover, it suggests a generalization of the NB,
valid in a finite but still small phase space domain, where the conditions of stationarity
are valid. This result further defines a convenient framework for a critical examination
of intermittency effects”, or lack thereof, in terms of standard short-range order phenom-
enology. Two-particle correlations are shown to play a crucial role and thus merit fur-
ther detailed experimental study, particularly in the interesting small dy region. Equally
interesting are analyses of higher-order correlations, which could directly prove or invali-
date the proposed factorization scheme.

Presently popular models such as FRITIOF or the Dual Parton Model for hadron
collisions, and the Lund shower model for e*e~ annihilations do not fully reproduce the
intermittency data. We have indicated that the model failures are direct consequences of
rather serious discrepancies between the measured and the predicted short-range corre-
lations, especially in hadron collisions. This fact has largely been overlooked in the past.
It is not clear, at present, if these shortcomings are easily curable, or hint instead to a more
fundamental flaw in our understanding of hadronization. -

Dynamics dominated by two-particle interactions is quite common in almost any
branch of many-body physics. In Sect. 5-we have examined the general class of gaussian
stochastic processes, the prototype of models where all correlations are expressible via
a single two-point ’coherence” function. We consider it highly non-trivial that the structure
of the correlations in this model is practically equivalent to, although fundamentally dif-
ferent from that of the linked-pair approximation which was proposed on empirical
grounds. The gaussian model therefore provides a general and satisfactory theoretical
foundation for the phenomenological description of the data, discussed in Sect. 4.

Although the formalism leading to these results is most simply formulated in classical,
probabilistic terms, and does nowhere invoke quantum physics, there exists, of course,
a strong analogy with the quantum treatment of a thermal electromagnetic field (the theory
of photo-electron statistics) [44] which has been repeatedly applied to hadron physics.
We suspect that the success of this approach is less due to a strict similarity between hadron
and optical fields, than to the fundamentally chaotic nature of the two processes, which
allows a common mathematical description.

We have already mentioned the similarity between the classical gaussian process
and the Random Phase Approximation in quantum field theory. This analogy has been
extensively studied by Karczmarczuk [62, 48], who showed quite generally how the method
leads, under certain conditions, to a negative binomial multiplicity distribution.

In a historical context, it should be mentioned that the exact result (33) was first ob-
tained by D. Slepian [46]. It describes the statistics of the average power dissipated, in
a finite time-interval, by a simple RC-circuit driven by gaussian noise.

It would obviously be naive — and not too encouraging — to conjecture that the
dynamical properties of hadronic matter are effectively equivalent to that of gaussian noise.
The dynamics of the hadronization of multi-quark .and-ghion systéms involves complicat-



625

ed non-linear phenomena, and the linearization implied by the models discussed is likely
to be an extremely crude approximation to reality. But, the statistical properties of the
hadron field, reflected in simple counting distributions, cannot be expected to reveal fine
details of the dynamics of the souroes emitting these fields, a fact well-known from optics.

In experiments where smaller and smaller regions of phase space are scrutinized,
and all other information is discarded, it may well happen that, unless strong short-range
dynamical excitations indeed occur, a minimal-information” regime — in the informa-
tion-theory sense — is ultimately reached where nearly all sensitivity to the “emitting
sources” is lost, and where particle fluctuations indeed exhibit characteristics resembling
that of gaussian noise.

Note added: After completion of this work, we received a paper by M. Biyajima
et al. (Vienna preprint UWThPh-1989-44), where the NA22, KLM and UAI data are
analyzed by means of pure-birth stochastic equations, and of the negative binomial. The
conclusions of this paper and those of our Sect. 3, are essentially identical.

Is is a pleasure to thank A. Bialas, A. Giovannini, L. Van Hove, W. Kittel and several
members of the NA22 collaboration for stimulating and enlightning discussions.
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