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MULTIDIMENSIONAL COSMOLOGICAL MODELS WITH
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The dynamics of the full class of multidimensional cosmological models with topology
FRW x T2, where TP is a D-dimensional torus is investigated. Phase portraits show possible
evolutions of FRW x T? models with a hydrodynamical energy-momentum tensor. Typical
solutions for late times are studied. The stability of solutions, with dynamical reduction
and inflation as dynamical effects of extra dimensions, is also discussed.

PACS numbers: 98.80.Dr

0. Introduction

Dimension and metric belong to fundamental properties of the physical space. The
metric of our space is a pseudo-Riemannian and the dimension N = 1+43. This has
been established, to a high degree of accuracy, within the length range of 10-'% cm - 10?% cm.
However, there are no reasonable arguments available for claiming that the space-time
dimension should be N = 143 also beyond this range. Presently, in connection with
the Kaluza-Klein idea, it is believed that for length below 10-1¢ cm the dimension could
be higher. According to this idea, one assumes that the additional dimensions, at the
present epoch, are compactified and “small”, i.e. their sizes are of an order of Planck’s
length (Jp; = 1.6 x 10-33 cm).
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If we assume that the volume of the internal space varies with time, then the values
of the fundamental physical constants should vary as well [1-3]. However, there is no
experimental evidence for any dependence of the fundamental constants on time. There-
fore, any ‘theory exploiting higher dimensions should provide a machanism to make the
internal space static, i.e. leading to the stable configuration of the type: (Friedman-Ro-
bertson-Walker model) x K (static internal space), [4-6]. The idea of purely gravitational
dimensional reduction was first put forward by Chodes and Detweiler [7, 8]. At present,
many vacuum solutions for the multidimensional cosmology, involving dynamical dimen-
sional reduction are known [9-12]. However, the existence of this reduction depends on
a particular choice of initial conditions. This is, of course, against the spirit of a “correct”
reduction mechanism. One of the suggested mechanisms to solve the problem consists
in taking into account the hydrodynamical energy-momentum tensor. Dynamical effects
generated by such a tensor will be examined in the second part of the present work.

In Section 1, the form of Einstein’s equations for the multidimensional cosmologies
with a hydrodynamic energy-momentum tensor, is derived. In Section 2, the equations
are reduced to the form of an autonomous dynamical system (for five different cases).
In Section 3, analysis of the dynamics of the considered models, in finite domains, is per-
formed. Conclusions are presented in Section 4.

1. Einstein’s equations for homogeneous multidimensional cosmologies

The Einstein equations for multidimensional cosmologies can be derived from the
variational principle, which postulates that the action 7, being the sum of the geometrical
action 7, and the action of matter I,, should bc stationary, i.e. 6 = 0. For N-dimensional
gravitation, I, has the form

1

= R-— 2/1
Ig 16 GJV\/ gN( )dx

where R is the scalar of curvature, and A is the cosmological constant. For I, one has:

I, = [LJ=gydx".
where L is a Lagrangian dependent on gy and dgyy. If, after Hilbert, the energy-momen-
tum tensor is defined as:

. d S 0 7] -
'%'\/_gNTMN=’a'W\/”gNL—§,5g_MTv\/—gNL

then the Einstein equations can be reduced (by using the condition 6/ = 0) to the form:

Ryn—% gunR—Aguy = 81GTpy. ' @

For our purposes it is convenient to transform this equation into the form which does
not include the curvature scalar:

R 882G | T, 1 T 2 1 4 (2)
MN = OT MN N__2gMN N—-2 872G 8MN |-
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The metric tensor gy for N-dimensional space-time with one time-like dimension
and n = N—1 space like dimensions is:

1. 0 0
gun = |0 ~R(1)gmn 0 ek 3)
0 0 ~r*(1)g,,

Here it is assumed that the total n-multidimensional space can be presented as a product
of two maximally symmetrical space, with d and D dipensions, respectively. By g., we
shall denote the metric tensor of the maximally symmetrical d-dimensional space, and
by g,, that of the maximafly symmetrical D-dimensional. (Both spaces are assumed to have
the unit radius.) Accordingly, R(t) is the scale factor of the d-dimensional space, r(?) is the .
scale factor of the D-dimensional space, and M, N =1,..,n-1; mn= 1,2, ...,4d,;
u,v=(d+1),...,(d+D) '

Following the conventions adopted by Weinberg [13], the Ricci tensor Ryy assumes
the form

R¥N = RE[CN’

Ricp = 0T tp—0plac+ & Ey~Tasl s, A,B,C,D,E=0,1,...N—1. (4

By using the diagonality of gy and the fact that g,, is independent of g,,, one can
readily find the non-zero Christoffel symbols:

gMN=0 M¢N9 ao§m=60§m=0’

R #
Fomzigmm rouv=;guv’
R i
]
I'm0=§6fm Fvu0=;6;'u
F‘mn = f'lmm Iwuv = I"—'vv"” &)

where [, and [",, are the Christoffel symbols for the metrics gus Lyv-
Basing on (5), the non-zero components of the Ricci tensor can be written as:

e

R dR+D;
00 ™ R . r’

- d (R - R F1R
Ro=Ro—g d2(ZY+1aZ +pT| 24,
wn = R g”’{dt(x)+[ R r]R}

" d (# R i)
= R,,— —(- — +D-{-3, 6
Ruy = R =8 {dt (r) + [d R + r] r} ©®)
R,, and R,, are the Ricci tensors for the space of dimension d and D, respectively. In

such case the tensors (6) are of the particular form [13]:
Row= —(d=DKZm» Ry = —(D—DkKZ,, Q)
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where K, k are constants characterizing the curvature of d- and D-dlmenswnal spaces,
respectively. Thus the general form of the Ricci tensor is:

R P
Roo =d~ +D-,
00 R+ ;

d— 1K R R 1 R
D—1k d (R R 1R
R,, = — 8y {(7—)—- +‘—1—t<§) + [di +D;:|—Ii} . ®)

In the reference system comoving with matter, the energy-momentum tensor has then
the following form:

TOO = g, mO = TO = 0’- Tmn = P8mn> - Tnv = p'gpv' (9)

The assumed symmetries imply that the energy density ¢ and the pressures p and p’
in the individual spaces, depend only on time: R = R(t), p = p(t), p' = p'(t). Now, the
Einstein equations can be put into the following form:

R 8nG
d— D— = —— N 3o+dp+D
® TD0- N [( Je+dp+Dp'—e4l,
d (R R F d- 1)K 8nG
(= = = D—1)p—D
dt(R) [ R r]R+ R®  N- 2[9"'( )p=Dr'+ e,
d F (D-Dk 8 G
—() [ —]Z+( 2) i [e+(d Dp'—dp+e4] (10)
d r|r r
. R r .
where g, = % . If, for convenience, we denote H = R’ h= 2 equations (10)

assume the form (in the units 8zG = 1):

) ' 1
dH+dH?+Dh+Dh? = — N—_z[(N—3)Q+dp+DP'—QA].

- @-nK 1
H+dH*+DHh = D—1)p—Dp'+e4],
+dH*+DHh+ —; N_2[9+( )p—Dp'+e4]
D—1)K
heowt+amns O L L 2[ o+(@d—1)p'—3p+e,]- a1

The final form of Einstein equations.for multidimensional cosmologies with topology
R x 83 x 8P _is:

. . 1
3H+3H?>+Dh+Dh? = — m[(D+l)e+3p+Dp'—eA



631

. 2K 1 ,
H+3H*+DHh+ < " b3 [e+(D-1)p—Dp'+ 4],

‘ (D-1DK 1
h+Dh*+3Hh = 2p'—3 . 12
+Dh*+3Hh+ —3 D+2[a+ p' —3p+04] (12a)

The requirement that the divergence of the energy-momentum tensor should vanish yields
an additional equation, describing the dependence of the energy density on the scale fac-
tor:

d _
T.=0s —dil +3H(g+p)+Dh(g+p') = 0. (12b)

Equations (12) costitute a complete system of equations, which describe the evolution
of multidimensional cosmological models.

2. Multidimensional cosmological models as dynamical systems

In this section equations (12) will be trassformed into the autonomous dynamical
system. Then, we will discuss models with a flat internal space. In that case, the dynamical
systems which describe the dynamics of the models FRW x T” (where T” = S!x ... x §%)
become two-dimensional ones. This allows us to present the complete classification of
admissible solutions on phase-plane diagrams.

For the sake of further discussion it is useful to distinguish five particular models
A—E
A. Vacuum model

For vacuum, ¢ = p = p’' = 0, A = 0, and the Einstein equations assume the form:
. 2 2 . 2 2K 2
3H+3H*+Dh*+Dh =0, H+3H*+DHh+ == =0 h+Dh*+3Hh = 0. (13)
From the constraint requirement we can obtain the “boundary condition”:
3K
== = —6H*—6DHh—D(D—1)h?. (14)

By substituting (14) into equations (13) one gets:

dH ' D(D-1 " dh -
— = —H*+DHh+ X )hz, — = —3Hh-DH,
dt , ; dt
3K
=7 = —6H2—6DHh—D(D—1)h? (15)

The equations have the form of an autonomous dynamical system.
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B. Model with dust matter
For dust p = p = 0, A = 0 therefore by using (12) we obtain:

. D+1 e 2K
H+3H*+Dh+Dh* = — —— o, 3H*+DHh = —— — =,

+3H*+Dh+Dh* = 572 H+3H®+DHh = PR
h+Dh?+3Hh = 2. 16
+Dh*+3Hh = (16)

This system has the boundary condition of the form:
} . . D(D—1

¢ = 3H*+3DHh+ X 5 ) R2 >0. - an

After substituting (17) to (16) we obtain:
3D +1 D(D-1) _  DD-1 D+1) K
_Ap+Y , DO-1) . DO-D ., @D+D)

(D+2) (D+2) 2AD+2) D+2 R?’
3 .6 D(D+5) 3K
h= H*- Hh— 2 - ,
D+2 D+2 "  2D+2) (D+2)R?
D(D-1) , 3K
¢ = 3H*+3DHh+ —(——2——) R+ = 18)

1
It is.convenient to introduce the variables x = HR,y = hr, dt = 1—( dt. In such a case
equations (18) assume the form:
2D+1 , D(D—1) D(D-1) , (@D+1)
x*—- xy+ y = K,
(D+2) (D+2) 2(D+2) D+2
dy 3 , D-4  DOD+5) , 3K
& p+2”  D+2 0 20+ Y T D+2)’
and the system is determined within the domain defined by the constraint condition:

()2
2

d..
d

19)

3x*+3Dxy+ +3K > 0. (20)

C. Model with a massless scalar(field
In this case, p = p’ = g, A =0, so we have the following system of equations:

. 2K
H+3H*+DHh+ == 0, h+Dh“+3Hh =0, 1)
with the condition:
D(D-1 3K
3H2+3DHh+ ( 2 ) h*+ == = =0. 2)
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After transforming to the variables x, y and the new time 7, one has:

dx dy :
= —2x*~Dxy-2K, —— = —2xy—Dy?,
o X Xy T xy—Dy 23)
with the condition:
| D(D-1 ‘
3x*+3Dxy+ —(—2——)»‘y2+3K >0. 24

D. Model with radiative matter

For radjation, p = p’ = s,'/l = 0. After taking this into account equations (12)

become
. 2K g e '
H4+3H*+DHh+ —5 = ——, h+Dh*+43Hh = ——, 25
\ * R T Dbi3 + D+3 25)
in the domain:
D(D—-1 3K
¢ = 3H>4+3DHh+ ( )h’+ — =0
2 R
In the variables x, y, t (25) assumes the form of the dynamical system:
| dx  (@D+3) , D* D(D-1) , @D+3K
== X = xy+ YT
dr D+3 D+3 2(D+3) D+3
dy 3 , D-6 DO+7 , 3K
— = xXy— - , 26
& D13 T013¥ T 20+3 Y " D43 (26)
E. Mode_l with a cosmological cohstant
Here we have ¢ = p = p' = 0, A # 0. Thus, basing on (12), one obtains
. 24
3H+3H?*4+Dh+Dh* = —,
DR D+2
. 2k 24 24
H43H>4+DHh+ — = ——, h+Dh*+3Hh = ——. 27
+3H*+ + 2 D12 +Dh*+ YT 2N
After simple transformations we obtain
. D(D-1 2D-1 24
H = —H?>4+DHh+ ( )h"— ( )A h = —3Hh—Dh*+ ——, (28)

3 C3D+2) D+2






The condition derived from the constraint equation is

K- D(D—1) A
— = —H*—-DHh— ———— h%4 .
R? h s "7t3

3. Qualitative methods of studying the dynamics of cosmological models FRW x T®

As it has been already mentioned, one of fundamental issues arising within teories
with extra dimensions is the problem of a proper mechanism of the dimensional reduction.
The problem of stability of solutions involving a static microspace was considered by
Maeda [4], but he limited his analysis to the case of the microspace being solely a function
of time. The method used in the present work allows us to investigate stability when the
micro- and macrospace are anisotropic. :

3.1. Dynamics of FRWxT? models in finite regions of the phase plane

As we have seen, equations (13), (16), (22), (25), (27) have been transformed to the
form of autonomous dynamical systems. As an example, diagrams show the phase por-
traits for the values of dimension D = 1, D = 6, for K = 0, +1, and for cases A and D.

In the cases B, C, D and K = ~1, there are two critical points x, = :tl; Yo =0.
The point x, = 1, yo = 0 is a stable attracting point, which corresponds to the solution
with a static microspace evolving linearly in time: R oc #. The point xo = —1, yo = 0
represents the same solution, but it is an unstable repulsing point.

In the case K = 0 there is a composite critical point of the saddle-knot character
at xo = 0, y, = 0, which corresponds to the solution: (Minkowski’s space) x K (static
space).

For K = 1, systems (19), (23), (26) have no critical points.

For the FRW x T” model with the cosmological constant A > 0, there are two knots

in the finite domain Hy, = hy = They are situated at the boun-

+ \/(D+2) (D+3)°
dary of the physical region. When H, > 0, there is an attracting knot, and when H, < 0 —
a repulsing one. Both points correspond to vacuum states. For negative valucs of the
cosmological constant the system has no critical points,

In Figs. 1.1-1.4 phase portraits are presented for vacuum models. In this case, there
is one composite critical point H, = h, = 0 and the corresponding state is unstable.

4. Conclusions

In the present paper, the dynamics é)f the complete class of multidimensional cos-
mological models with topology FRW x T” and a source in the form of a hydrodynamic
energy-momentum tensor has been investigated by using methods of the qualitative theory

<
<

Fig. 1.1-1.2. Phase portraits for the vacuum model FRW x TP in finite domains, for D=6and K= 1, —1
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of differential equations. The phase portraits for the cases under consideration have been
made with the help of the computer program ‘“Dynamic” (see A. Lapeta, B. Lapeta,
M. Szydlowski, Internal Publ. OAUJ, 1989).

In the literature, there are known only some exact vacuum solutions, namely those
which can be explicitly integrated in quadratures. Application of the dynamical systems
methods allows one to analyse the complete class of models and to examine their typical
properties.

Our main conclusions are:

1) All typical states of the metric, for large times are situated at the boundaries of relevant

K .
constraint conditions ¢ = 0, o 0, which correspond to the states for which the effects

K
due matter or curvature—ﬁare negligible.

2) For the FRW (K = —1) x T? models, the typical state of the metric, as ¢ — o0, is the
model corresponding to the Milne phase of the physical space (R cc t) and to a static
state in the internal space. This configuration is asymptotically stable and can be attained
in two ways: either a) the internal space contracts to an infinitely small size, while the
physical space expands; or b) the internal space expands from a singularity to a constant
size, while the physical space expands too. In the literature, for no clear reason, more
attention is given to the case a). It can be demonstrated that, for models realizing case b),
the horizon problem can be overcome. Barrow [17] has showed that in the inflationary
models the section of the horizon problem is connected with the condition R > 0 (he
has considered classical 3+ 1-dimensional cosmologies). For the FRW models, this con-
dition is met only when the strong energy condition is violated (¢+3p) < 0). In the FRW
x T? models, due to the expansion of the internal space to a constant size, the inequality
R > 0 can be satisfied. The region in which this condition holds is indicated in the phase
portrait for the world model with a radiation matter (see Fig. 3). It should be noticed that
the horizon problem can be resolved only within the models with an expanding internal
space. .

3) Let us. consider the case of models having a source in the form of a hydrodynamic
energy-momentum tensor. It can be shown [18] that the quantum effects, due to a massless
scalar field in an external gravitational field, at high temperatures, give rise to a hydro--

dynamic energy-momentum tensor of radiative matter (p = %.;) The effects of classical

massless scalar fields correspond to the case p = ¢ discussed in this paper.

4) The overall result of this paper is that the dynamical system approach can be efficiently
applied to investigate the dynamics of multidimensional cosmological models. The method
is especially usefull to discuss generic character of different model’s properties and their
dependence on initial conditions.

<
<

Fig. 1.3-1.4. Phase portraits for the vacuum model FRW x T? in finite domains, for D=1and X =1, ~1
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yAaxls

xX axis
Fig. 2.1-2.3. Phase portraits for model FRW x TP with radiative matter in finite domains, for D = 1 and
K=1,0-1
APPENDIX

General remarks useful in determining possible evolution patterns from phase
portraits

1. Phase trajectorieké are scaled with different time parameters, the time parameter
dt . ’ . . dt
T (d-r =R’ dry = x d‘c) is strictly monotonic function of the time ¢ (E = R> O).
2. In asymptotic states, typical states of the metric are always situated at boundaries

of the relevant constraint conditions and are represented by the Kasner asymptotics:

3+\/3D(D+2)
3p;+Dp, = 3p?+Dp; = 1, = T
121 P2 1 41 P2 Pi+ 3(D+3)

_ D+v/3D(D+2)

P2+ = " 3(p13)

The asymptotic of corresponding solutions near the initial singularity have the form (in
time ?):

s
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X axis

Fig. 2.4-2.6. Phase portraits for model FRE x TP with radiative matter in finite domains, for D = 6 and
K=10-1 - o

Fig. 3. Phase portraits for model FRW x TP with radiative matter in finite domains, for D = 6and X = —1.
The region where R > 0 is represented by hatching
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near the initial singularity

Roct?*, roct’™ -0  (AD)
Rac -, roct+ (A2)
and near the final singularity:
Roc(to—0""*, roc(to—t)"t—1t, (B1)
R o (to—1)"", roc(to—1)"". (B2)

3. Asymptotic states, in which the sizes of the macrospace and the microspace are
comparable in size, are represented by non-stable saddle points. For instance, asymptotic
solutions for radiation are of the form:

2

Rocroc (§P**,  near the initial singularity,
2
R o roc (tg—1)°*%,  near the final singularity.
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