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MULTIDIMENSIONAL COSMOLOGICAL MODELS "WITH
HYDRODYNAMICAL ENERGY-MOMENTUM TENSOR.
PART II. ANALYSIS OF DYNAMICAL SYSTEMS AT INFINITY*
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The dynamics of the full class of multidimensional cosmological models with topology
FRW x TP, (where TP is a D-dimensional torus) near the singularity is investigated. Phase
portraits show possible evolutions of FRW xT? models with hydrodynamical energy-
-momentum tensor. The problem of stability of solutions with a >’crack-of-doom” singularity
is also discussed.

PACS numbers: 98.80.Dr

0. Introduction

This paper is a continuation of our previous work [4]. In the present part we disscussed
trajectories at infinity.

In Section 1 analysis of the dynamics near singularities is performed with the help
of the method of dynamical systems. It has been possible to reduce the problem to a 2-
-dimensional phase space [Part I}. The conclusions are summarized in Section 2.

1. Dynamics of cosmological models near singularity

To have a complete analysis of the phase portrait of a dynamical system one must
know how the system’s trajectories behave at infinity. To this purpose one should perform
the transformation to projective variables (z = x!, u = yx'); (v =y, w=xy)
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**% Address: Instytut Meteorologii i Gospodarki Wodnej, Borowego 14, 30-215 Krakéw,
Poland. )
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Fig. 1.1-1.3. Phase portraits for model FRW xTP with dust matter in projective coordinates (z, ), for

D=1, andK-l 0 -1

and conformal time t: dt = x dt (for z,u) and dr = y dt (for v, w). In these variables the
straight lines z=0 —o0o <u<oo and v =0 —o0 < w< oo correspond to infinitely
distant points of the plane (x, ), and studylng of this system in projective variables is
analogical to investigating the system on finite regions. As previously, we will consider

five cases.
A. Vacuum model

System of equations (see Eq. (15)-Part I) in projective coordinates (z, #) assumes the

form:

% = —2u;2Du2'~

where dr, = H dt, with a condition:
K( ~6—~6Du~D(D—1)u?) > 0.
In projective variables (v, w) we have

dv d D(D~-1
—_— Dv+3vw, o = 2Dw+ 2w+ ( ),
dT1 d‘tl 3

DD-1) ,
u-,

@

@
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Zz axis

Fig. 1.4-1.6, Phase portraits for model FRW x T? with dust matter in projective coordinates (z, u), for
’ D=6and X=1,0 —1

with the condition:

K<_ D(Dz"l) —3Dw—3w2) >0, @

where dr, = h dt.
B. Model with dust matter

Dynamical system (19) (see Part I) in variables (z, u) assumes the form:

dz 2D+1  D(D-1) D(D-1) , ~ (2D+1)
—_— = z+ zZu— u'z K
dt, (D+2) " D+2) 2D+2) D+2

L4

. _ 3 X0-)  DO-7) , 2K
—_ = z
dty, D+2  D+2 2D+2) (D+2)

D(D-1) , @D+1)

- ——— Kz%u,
20+2) “ T py2 G ©)
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w axis

v axls

Fig. 1.7-1. 9 Phase portraits for model FRW x TP with dust matter in projective coordinates (v, w), for
D=1 and K=1,0 -1

in the domain

. :
3+3Du+ (2 ) u?+3Kz* > 0. ()]
For coordinates (v, w) we have:
dv  D(D+5) ’ D—_4vw 3 ow? 3K I
— — — we — R
dt; 2AD+2) D42 D+2 D+2
dw  D(D-1) D(D—’I) S 3(D—-1) Wi 3 w3
dr, 2(D+2) 2(D+2) : D+2. D+2
2D+1 _, 3K ‘
+ Kv*— wo?, O]

D12 " T D+2

in the domain:

D(D—1.
3w?+3Dw+. ( 5 )+3Kv{> 0. 3

The phase portraits of.systems (5). and (7)'prcsented in Figs. 1.1-1.12
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Fig. 1.10-1.12. Phase portraits for model FRW x TP with dust matter in projective coordinates (v, w),

"for D=6,and K=1, 0 —1

€. Model with a massless scalar field

After transformation to variables (z, ») and time 7, : dr, = x dx, system (23) (see Part I)

assumes the form:

dz 3 du 2
— = 2z4+Dzu+2Kz°, -— = —2Kzu,
dz, dzy
with the condition:
D(D-1 :
3+3Du+ ( )u2+3Kzz >0,

while for variables (v, w) and time 7,; dr, = y dv we obtain:
dv

— = 2vw+ Dy,
7 +

— = —2K1?,
Ta dtz

with the condition:

3w?+3Dw+

D(D-1
( 5 )+3Ku2 >0.

In Figs. 2.1-2.12 phase portraits of the above systems are presented.
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23

(z, u), for D=l? and K=1,0 -1

D. Médel with radiative matter v
Dynamical system (26) (see Part I) in projective variables (z, u) assumes the form:
dz 3(D+2) D? D(D-1) , (2D+3)K

= z+ z

il - , 3
d, . D43 T D3 T ap+3 Yt Thes a3
du  3(D-1) 3 D(D—7)l“ DD-1)
— u - —
dv, D+3 D+3 ' 2(D+3) 2D +3)
3K , (2D+3)K ,
+ D+3z + D13 z°u.
in the domain ’
D(D-1
3430ut+ 280 23k 50, (14)
For variables (v, w) we have:
dv  D(D+7) 9 3, 3K ,

w2043 T D™ 03 T pa3?
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u axis

z axis

Fig. 2.4-2.6. Phase pbrtraits for model FRW xT? with massless scalar field in projective coordinates
. - (z,u), for D=6,and K=1,0 —1

dw DD—1) DO-7) 3p-1) , 3 , 3K ,
— - W= — - w— v'w
d,  2D0+3)  2AD+3) " D+3 " D+3" ~ D+3

2(D+3)K ,

D3 | (15)

in the domain:
~— D(D-1
3w?+3Dw+ (2 )+3Kv’>0. _ (16)

E. Model with the cosmological constant

For variables (z, u) system (28) (sece Part I) assumes the form:

dz D(D-1) , 2D-1)
— = z—Duz— . —~ Az°, 17
e AT ¥ an
d A 24  D(D—1 2AD-1)
M Cou—2Du*+ X )y X )A 2

_ u uz®,
dt D+2 3 3(D+2)
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W axis

v axis

Fig. 2.7-2.9. Phase portraits for model FRW X TP with massless scala.r field in pro;ectlve coordinates
(v, w), for D= 1, and K=1,0 —1

in the domain:

.. D(D-1 D\
K(—-3—3Du— (,2 )u2+Az’) > 0. B ¢t))
In variables (v, w) the system is:
dv 4
v,
d‘tl D+2
dw Dp-1) 2D-1) 24
—— = 2D 2 Av? s _ 19
pr A S 7 W R T S (19)
in the domain: ,
D(D-1
K(— _( 5 )—3Dw—3w2+Au.=)> 0. , (20)

As it can be seen, from the phase portraits obtained for the considered dynamical
s ystem in projective variables (z, u) and (v, w), the structure of the phase plane is in prin-
ciple independent of dimension D, except for the case D = 1. Another dimension explicitly
included in the portraits is D = 6, which is distinguished by the superstring theories.
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W axis

v axis
Fig. 2.10-2.12. Phase portraits for model FRW x T? with massless scalar field in projective coordinates
(,w), for D=6,and K=1,0 —1

Furthermore, one should notice that all typical critical points are situated at the boundaries
of the corresponding physical copsitions. (A critical is called — typical, for ¢ — oo, if
it is an attracting point. A solution, for ¢t = 0 (r > —o0), is typical if the corresponding
critical point is repelling.) [1, 2}.

Another property of typical critical points, which can be seen from the phase
portraits, is that they lie at or below the straight line u = 0, w = 0.

Among five cases considered here, the phase portraits of the FRW x T” model with
a mssless scalar field (p = p’ = ) are peculiar in a sense. They are represented not by
isolated critical points, but by infinitely many of them, constituting straight lines z = 0,
—o<u<ooand v =0, —00 < w< oo (“singular straight lines”). Points situated on
and above the non-physical region are unstable repelling points, whereas those situated
below the non-physical region are stable attracting points. It should be also noticed that
the straight line z = 0 corresponds to the singularity of the physical space (H — o0),
<and the striaght line v = 0 — to the singularity of the internal space (A — ).

For a model with negative curvature (K = —1) in variables z, u, besides the singular

straight line there are also two attracting knots z, = + \/ - % u, = 0, which correspond

to stable solutions with a static microspace (y = 0).
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2. Conclusions

In:this paper, the dynamics of the complete class of multidimensional cosmologlcal
models with the topology FRW x T? and a source in the form of hydrodynamic energy-
-momentum tensor was investigated. :

The phases portraits have been (as in the Part I), made wuh the help of the computer
program “Dynamic”.

As in the Part I of the present paper, we shall not discuss particular cases, but rather
point to some general conclusions.

1) For models with the closed internal space and D > 1, the typical state of the metric,
for large times is R — oo, r — 0, and ¢ — t,. In other words, after a finite period of cosmo-
logical time the model attains a singular state, in which the size of the physical space is
much greater than that in the internal space. Rosenbaum, Ryan, Urrutia and Matzner in
their paper of 1987 [3], showed that in the model with dust matter there are singularities
of the kind which they called “crack-of-doom” singularities. The authors considered the
case of one-dimensiopal internal space (D = 1) and stated that the dust models can reach
a state in which, after a finite time 7,, the internal space attains the zero size, while the
physical space exhibits a regular behaviour (a singularity appears in the total space, but
it is “hidden” from an observer in the physical space). Our considerations show that
such states can actually occur, but they imply the existence of one additional dimension
and are independent of the form of matter (for the dust case D = 1, dynamical equations
are integrable; this was probabaly a reason that such singularities had been noticed at
all). The models for D = 1 are very peculiar ones, since D = 1 is a bifurcation parameter
and the phase portraits for D > ‘1 have a quite different topological structure. To sum up,
typical states of the metric are those in which R = 00, r = 0and ¢ — t, (D > 1); therefore,
the crack-of-doom singularities may appear only after the physical space has grown in size
to infinity. It should be noticed that in multidimensional cosmological theories the closed
character of physical space does not imply that it is of a finite size (R < Rp,,, as it is in
the case of classical (1+ 3)-dimensional closed models):

2) Let us consider models with a.source in the form of hydrodynamlc energy-momen—
tum tensor. It can be shown [3] that quantum effects due to a massless scalar field in an
external gravitational field at high temperatures, give rise to the hydrodynamic energy-
-momentum tensor of radiative mat'tet( = B%S) The effects of classical massless
scalar fields correspond to the case p = g discussed in the present paper.

APPENDIX

General remarks useful in determining possible evolution patterns from phase
portraits

1. Phase trajectories are scaled with different time parameters: Time parameter 7

- ar ! dr
(d‘t =R’ dt, = x d-c) is a strictly monotonic function of time. ¢ (E =R> 0) . The
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new time parameters 7y, T, are strictly monotonic functioxis of r, for x >0 and y > 0,
respectively, and-of —rt, for x < 0 and y < 0, respectively. Accordingly, the attracting
critical points occuring in the region x < 0 and y < 0 are repelling critical points in time
T Or L.

2. In asymptotic states, typical states of the metric are always situated at boundaries
of the relevant- constraint conditions and are represented by Kasner asymptotics:

, 34+4/3D(D+2)
3p;+Dp, =3pi+Dp} =1, piy = —W ]

D+V3D(D+2)

P2 = 313

The asymptotics of corresponding solutions, in time ¢, have the form:
near the initial singularity

R oc t"‘:*', rct?, Roct™, ro i t-0. (Al)
Roc t",  roctP, t=0. (A2)
and near the final singularity
R (fo— 0", 1o (=0, (B1)
Roc(to—1)%", roc(teg—t*, tot,. (B2)

3. Asymptotic states, in which the macrospace and the microspace are comparable
in size, are represented by non-stable saddle points. For instance, asymptotic solution
for radiations are of the form:

2

D+4

Rocroc(t near the initial singularity,

2
)m

Rocroc(ty—t) "%, mnear the final singularity.

4. Singularities of the crack-of-doom type are always connected with the presence
of the critical point v, = 0, wy, = 0, i.e. a singularity occurs in the internal space, and
thus in the total space, for arbitrary values x. The corresponding asymptotic solutions
near singularities of this type are of the form (B1) and (B2). If ¢t —» ¢,, R — const for
D= 1,and R — oo for D > 1, while r o¢ (to—¢) for D = 1, and r o (t,—12)"** for D > 1
02+ < 0). The asymptotic B2 is valid for a space-time with an expanding physical space
and a contracting internal space, and the asymptotic Bl for symmetrical solutions with
a contracting physical space and an expanding internal space. Let us notice that the initial
singularity in the FRW(K = —1) x T! model has the structure of a crack-of-doom singu-
larity. Because of a dynamics of additional dimensions, although the physical space has
no initial singularity, the singularity in the total space results from that of the internal
space (which expands from a singularity to a constant size). From the phase portraits
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it can be seen that the final singularities of the crack-of-doom type are typical features
of models with closed physical space ; this models exhibit the following behaviour R — const
for D=1, and R —» o for D > 1, when t — #,. For models with flat physical space,
this state is attained for ¢ — co.

5. Let us notice that the phase trajectories in the system (z, ) and (v, w) are sym-
metrical with respect to the axes z=0and v = 0, respectively. In the region z < 0 and.
v < 0, times 7, and 7, are monotonic functions of —t. From the phase portraits it can
be seen that the crack-of;doom singularities are stable final singularities (in time ¢) within
the class of solutions with contracting internal spaces, and stable initial singularities within
the class of solutions with expanding internal spaces.

We are gratefull to Prof. M. Heller for reading the manuscript and discussion.
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