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REPULSIVE PAIR INTERACTIONS AT THE STRONG EXTERNAL
FIELD

By R. GIELERAK
Institute of Theoretical Physics, University of Wroclaw*
{ Received February 19, 1988; final version received February 22, 1990)

For the case of a pair repulsive potential, certain integral identities between condi-
tioned correlation functions describing the grand canonical Gibbs ensemble of the Gonchar
type are derived and some applications of them are described. In particular we prove the
uniqueness of the grand canonical Gibbs whenever sufficiently strong external field is switched
on.

PACS numbers: 05.50.+q

1. Introduction

The knowledge of the structure of the set of the Gibbs equilibrium states describing
continuous systems of classical particles at thermal equilibrium in the region of large values
of the chemical activity or at low temperatures is still very incomplete. Some recent ad-
vances include results for a class of generalized Widom-Rowlison type of models [1-3] and
the charged but neutral two-component systems in which the interaction is given by a suf-
ficiently regular function of positive type [4-9]. Recently we have proved uniqueness
and analyticity of the Gibbs equilibrium states for values of the inverse chemical activity
that do not belongs to the spectrum of the corresponding Kirkwood-Salsburg operator
[lo-11}. '

In the present paper we consider a very special case of the general situation analyzed
in [10-11]. We consider classical gas of particles in which the interaction is given by a two
body, repulsive potential ¥, and moreover there is sufficiently strong external field ¥V,
switched on. This corresponds to the class of systems considered before by Moraal in series
of papers [12]. Selecting certain system of integral identities of the type used previously by
Gonchar [13] we give a short proof of the uniqueness and analyticity of the limiting Gibbs
state. This is a corollary of the results obtained in our recent papers [10, 11]. Here we
intend to present an independent proof of this by a method which seems to be ideally
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well suited for the case at hands. Several other applications of those integral identities
will be presented elsewhere. In the Appendix to this paper we present a quick derivation
of those integral identities.

2. Pair repulsive interactions in a strong external field

Throughout this paper we will assume that ¥, > 0 and V, is of certain decrease at
infinity (see below) and moreover V; is such that for every 8 > 0: exp (—BVy) € L,(R%).
Let

P(dx) = exp (—BVy(x))dx. 2.1

Let £, be from now on the Banach space of all sequences of measurable functions f = (fy,
f2s.-,), where each f, is measurable on ([0, 1] ® R*)®" as a function of the argument
@, x), = (t1, X1,...,1,, X,) and the norm in %, is given by:

I, = ess S)upf..(t, X)pe (2.2
t,x
In the space #; we define the following vectors; for any
AS R, 220, B>0, weQ'(R%.
Let:
Ey(z, o, Bi (t, x),)

—Ba B tVa(xi=y) ~8 T E(1x)|o(4?)_
=1 e i=t

= exp(—z ;‘; dy(y)[1—e D 23

where as before

Bt x)lo(d) = T n¥an-2) @4

zeo(A

means the energy of interaction of the configuration (¢,, x,) with @(A°) by the two-body
potential V,. The parameter a € [0, 1]. ' v
Then the sequence

Eﬁ'(Z, a, ﬁ) = {Efl)(z’ a, ﬁl (t’ x)n)}:o=1 (25)

belongs to the space %, and {|EG (z, o, f)||; < 1 uniformly in all parameters.
For @ = ¢ let us define

, E5™%(z, a, B) = E4(z, 0, B) (2.6)
and for o = ¢, A = R
ES™%(z, ¢, B) = E. (2, a, B). @
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Certain linear operators acting in the space #, will now be defined forany 4 < R%,0-€ Q"
(R%. Let G4(z,B) be defined by:

(G2, B)S)alts X)m

11
= PzXEZ(z, 15 B €t X)) é da ;‘! ".dtj{ ay(y) l! dy(y)EZ(— 2, o, Bl (1, X)m)

X (.21 1V (x,—~y)) exp (— ﬂ“) 21 Vo=V =) exp (- BtV (y—y")
x exp (—BE(z, y) l(A9)) exp:( — BE(Y 10(AN) fons 2ty X5 3)s a, y). 2.8)
We will use also the notations

G2™%z, B) = Gu(z. B);  G4Zb(z, B) = Go(z B). 29)

Using the following simple estimates:

E3z,1, B8, %),) <1

€ss sup sup , €2.10)
tomo<e<1 E4(z, o, B (1, X)u) '

1
xfe™da <1-e* for x>0 2.11)

0.

we derive the following estimate on the norm of the operator  G2(z,B):

1163z, Al < 4zB*y(4) (2.12)

which shows that G%(z, f) is bounded and moreover for small zf? is a contraction.
Let us define also:the amputated, extended m-particle correlation functions ¢3(z, f|
(1, x),,) by the following formulae:

25z, B 1 (t, 9)) = 27" exp [BE(t, X) | (1, XD v XA))eii(2, B (1, )w)], . (2.13)

where the extended m-particle, conditioned correlation functions 0%(z, Bl (¢,-x),,) are
defined by:

04(z, Bt X)) = (Z3(z, B)) 2"
XZ % f Ap(y), AP [~ BEWt X ¥V (a | (1, X v () v (AY], (214
n=0 A

where

00

iz B) = Z;} fdm), exp [~ BE((), | (3 v 0(AN]- (2.15)

n=0 4
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We will use also the notation

057% = 84z, B) = {057z, Bl (t, Dmtm=1,2.... (2.16)
0424z, B) = 3.(z, ). (217

From the assumption y(R®) < oo it follows easily that g is a well defined vector in the
space #,. Similarly we define

Z5742, B) = Z4(z, B)s - Z3Zhe = Z.(z, ). (2.18)
It is proved in the appendix to this paper that the amputated, conditioned, extended
correlation functions ¢%(z, §) fulfil the following equalities:
24(z, B) = G3(z, B)2i(z, B)+E4(z, B). (2.19)
By the same arguments:
€=(z, B) = G (z, B)2.(z, B)+Ey(z; B)- (2.20)

The comparison of the identities (2.19) with (2:20) is the core of our method. Note the
simple estimate:

exp [—zp(4)] < ess iup 184z, Bl (1, X)ml <1 (2.21)

uniformly in @ € Q"(R;) and A. Now we redefine the norm in the space ®,. With the
help of inequality (2.21) we can define a. new norm.:

‘ Lf;l(t,x>u|
fli;. = sup ess sup — ~—"——. 2.22)
) ¢ np ¢, x)n P Qm(z,s ﬂi (t’ x)u (
From estimate (2.21) it follows that the new. norm. |} — 11z, is equivalent to the old one || — ||,
il < 1 llgw < E*ENS 1y (2.23)
The following simple observation is essential to our proof.
Lemma. 2.1
For any z > O the following estimate is valid:
1G oz, Bz, <:1i @24
Proof:
From the definition of the norm ||- [ , identities {2.20) and the estimate (2.21) it
follows:

[(Geo(z, BYS) [ (8, X)n

N T 2, Bl (6 X))
< sup ess sup Guz: P22, ) (8. X), 1 Nz

L] [(2%3 7% éoo(zs ﬂ l (t’ x)a)
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< sup ess sup 0.(z, B1(t, X)) —E(2, 1, B | (¢, X))
» (t,x)n ) éw(z; ﬂ| (t, x)m

< (1=e"*) | flis...

"f“ﬁco

Lemma 2.1 shows that the operator G (z, f) is contractive in the space #;_for any z> 0
and B > 0. Therefore the Neumann-Liouville expansion

(1 -Gm(z, ﬁ))- Zo G, (Z, ﬁ) (2.25)
is strongly convergent there. Taking into account the equivalence of the norms ||—||;
and ||—|[;, we conclude that expansion (2.25) is also convergent in the space #, (for

any z > 0!). Thus the equation (2.20) has a unique solution g (z, f) in the space #, for
any z > 0, B > 0 and this unique solution is given by:

2@ f) = 3, Gular DEL: ). (2.29)

Similar considerations apply to the system (2.19) as well.

In the next step we check that finite volume objects, like Ej, Gy tend strongly to the
infinite volume quantities, respectively E and G, for any o e Q"(RY).
Lemma 2.2

Let (4,), be any monotone sequence of bounded subsets of R* which tend to R? by
inclusion. Then for any z >0, w € Q"(R’) we have the equalities

1. lim E (z,a, B) = E (2, ) (in the norm ||—||)

n-*o0

2. lim G4z, B) = G (z, B) - (strongly in the space #,).

B+ a0

Proof:
By the simply derived chain of estimates:

]EA(za a, ﬁi (19 x)m—Eoo(z’ o, ﬂi(t” x)n)l
<z ,i‘lc dy(y) [L—exp (—pa t; tV(x;—yN] (2.27)

< 2z9(A%)
from which the proof of 1 follows immediately. Let us define:
GA(zs ﬁ) EA( z,q, ﬂ)GA(zs ﬁ)

From point 1, if follows that E,(—z, «, f) tends strongly to E (—z, 8, 1) as a multxph-
cation operator. Therefore it is sufficient to show the strong convergence G ., = G, For
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this we note (with an obviously simplified notation)

(G a(z, BY—G (2, Bl (2 %),

1 1 .
< [da [d [ dy(y) | dy(y) [E4~E,) ... Ifll;
0 0 A A
1 1
+ [dafdcfdp(y) | dp(y) |IEgz=—El ... Ifls
0 0 A ) A° ’
1 1
+ fdafde § dy(y) | dp(y') (E4—E (...) Iflly
0o 0 4 1 :

11
+ {d“ g de ch'P(J’)Afn dy(y') (Ea—EL)! (-..) lIflly

< {Bzp(ADPRY? +629p(A) 9(R) + 8294} |If - 2.28)
qg.e.d.

We proceed now to the case w # ¢.

Lemma 2.3
Assume that V, = V hasvdecrease at co not slower then [x| ~9-* for some &.> 0. Then

for any z >0, w € Q(R%)

1. lim E3(z, %, B) = En(z. 2, f) (in the norm [|—1,)

L g ]

2. lim G4 (2, B) = G, (2, B) (strongly in the space #,).

B

Here (A,), is an arbitrary spherical-like sequence of bounded subsets tending to R*
monotonously and by inclusion.

Proof:
The following chain of inequalities is easy to derive:

|E2(2, a, Bl (2, X)) —E(z, &, Bl (¢, x),)|

<z [ lexp(=Pa 3, t¥ (=) oxp (~af T ub(rio(4)
—exp (o 3, iV (si=)ldp()
+2 § dy0) [L-exp (=B 3, 1V (s= )]

< 2ep(A+ § lexp (~fa T, LBGRI0(A) ~1d0). 2.29)
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Let (Y,), be some sequence of spherical like subsets of R, such that Y, « A, diam(4,)-
-diam (Y,) ~ r4** for some &' > 0, where we have denoted diam (4,) = R, and diam ¥, =
= r,. Using such a sequence (¥,), we have

2 { lexp (~fa ;Z LEGe|o(A%) ~11dy()
<ap  ay(y) ‘gl E(xJo(A%) + 2294, — Y,) (2.30)

<nconst|Y,| ¥ (N+R,)"'In(N+R,) (R,+N—r) """ +2z9(4,-Y,).
N=0

< nconst r;* +229(4,~ Y,)

for some &'’ >0,

From the last estimate it follows that.
lim sup IE;,(Z: o, ﬁl (t’ x)n)—an(zs o, ﬁ‘ (, X),,)I = 0. (2317
Atoo(t,X)n

- g’

Moreover taking r, to be n-dependent, like r,(n) ~n rp where r, fulfil conditions

imposed above we obtain

lim “E;},(zs a, B)—Eq(z, a, ﬁ)fh = 0. (2°32)

Pt

Similarly we prove 2. We summarize our previous discussion in the following theorem:
Theorem 2.1
Let us assume that the pair potential ¥ is nonnegative, ¥(0) > 0 and ¥ is continuous

d
at zero, V(x) has fast decrease at oo like |x|™%* forsome e > 0. Let ¥, = ~1/fIn a—%be an

external field such that exp (—fV;) € L,(R). Then for any z >0, p >0 there exists
a unique tempered, grand canonical Gibbs measure p(z, B, ¥|dw), the correlation func-
tions of which are given by: .

éoo(z’ ﬁ) = éw(z’ ﬂ)lt= 1+ (233)

Proof:
From the results proved above it follows that for any w € 27(R%) and any z > 0,
B = 0 we have the convergence:

lim QA,.(Z5 B) = llm [1-Gi(z ] 'Es(z, B, 1)

n—*o n=>w

=[1=G.(z, ] ’Ew(z,l B (2.34)
= 8(z, B);
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where the limit is taken.in the ||— ||, norm and the sequence (4,), fulfils the assumptions
of Lemina (2.3). From the definition of the set QT(R%), the assumed decay properties of
¥ and the definition of %(z, ) it follows easily that. for any compact £ < R*we have
the convergence: ,
lim SUF; 1" - 83z, BIt, X)) = x2" - 8z, BI(1, X)) (2.35)
Ato  (4,x)n L
and this is sufficient to conclude that the corresponding conditioned finite volume Gibbs
measures u%(z, Bldw) tend to the limiting measure y (2, f) in the sense of weak converg-
ence.

Remarks:

From the assumptions made on the two-body potential ¥, in the formulation of
{2.1) it follows that the interaction is superstable and R-strongly regular. In this case it
is possible to prove that the corresponding “infinite volume” Kirkwood-Salsburg has
zero Fredholm radius and in this case the spectrum of the corresponding Kirkwood-Sals-
burg operator is pure point and coincidies as a set with the inverses of zeroes of the parti-
tion functions which in our case are located outside the real line on {ze C|Im z > 0}.
These results follows by extending arguments of Zagrebnov [14] to the case at hand.

It is possible to switch-off the external field ¥y, i.e. it is possible to control the limit
V, - 0 (in the sense of L(R%) at least for small zp? for the models at hand. For this we
Jhave to improve the bound (2.12) to obtain one uniform in A. This topic and several in-
teresting criteria for the uniquencess of the limiting Gibbs states (in the limit ¥; = 0!) are
the subject of our forthcoming paper.

APPENDIX

Let us recall that the one dimensional differential problem:

df
d_{c = a(X)f(x)+g(x), f(xo) =So

has a solution given by the following formula:

8 x
- § dta(r) § dta(t)

f0) = (fot [dsg(e ™  Jeo . A1)

‘This is the basic formula which we will use repsatedly to derive identities (*). Using defi-
nition (4.13) we get:

= s Blct, )
T
= (=20 3 it Valm—x) =B 3, uBCeloaXAO}e(st, )

~$2fdy 3, WVt D v (1, 9D a2
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with
Q?(z’ ﬁl(‘“’ x)u)lg:o = 1.

Application of the basic formula (A.l) then yields

03z, BIt, X))

= exp (= 3, V(=1 exp (=B Y. tECulo(4Y
~Bz [ do | dp(y) exp (~B(1~2") V) (A
 exp (=B(L=2) . LE(xlo(4)

X 3 WV M@t D v (L ).
Proceeding similarly:
3.
6_t, Q:li)(z’ Bl(t’ x)m)
=[-8 z;} t;Va(x;— x;) — BE(x;| (AN (z, BI(t, x),)

'-‘BZ j.d(x)m+ lV(xi_xm#l)QZ(z’ m(ta x),, v (la xm+ 1)) (A4)

with the initial condition:

04z, Bl (t, X)yu=0= €4(z, BI(t, X)a-1),

where

" . ’ )
(t) x)m=1 = (tb Xis -eny ti—l) Xi-1s ti+19 Xit1s o> tm, xm)‘

Integration then gives:
04(z, BI(t, X)m)

= exp (=§ 3, tutiVa(xi—x) exp (= PECxla(47)ex(z Bl (t X1
—pz 6( dr,exp (— B ; t(t;— )V (x;—x,)) x exp (— B(t; — 1) E(x,|(A°))

X § AP+ 1 V(X X1 1052 Bl - Tty Xps +v (1, X t))- (A.5)
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Now we substitute (A.5) into (A.4) obtaining:

0z Bl(at, ) v (1, ) = exp(— z atV(x,~ )

1 m
— Bz OI dr AI dy(y,) exp (—ﬂlg aty(1—1)) exp (— (1 — DE(ylax(A))

X Qﬂ(z: ﬂ](“t, x)m v (7, ,V) v (1: yl))' (A6)'

Identitites (A.6) are then subsitutied into (A.3), which after some simple algebra yields
the following relations between amputated, extended correlation functions:

24(z BI(t, X)) = EZ(2%, Bi(2, X))
11 )
+ﬁzzEA(---) '.S da (j;‘ dr é; d'P(Y):! Ad(@) (VDEL(—z, o, Bl (1, x),)

X (é':1 Va(x1—y) exp ( -ﬂaé‘,l 02—y (Vay—y1) exp (= FeVa(y—y1))

x exp (— BV(ylex(A9))) exp (— BV(ylex(A)))
X @4(z, BI(@t, X)m; (7, ), (1, ¥1)) (A7)

which are exactly component-wise written identities (2.19).
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