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Using the properties of the so-called fundamental solutions to the one-dimensional
Schroedinger equation having Froman and Froman form the rules are formulated which
allow one to evaluate matrix elements in the JWKB approximation and its generalizations.
The rules apply to operators M(x, d/dx), M being polynomial functions of their arguments.
The applicability of the rules depends on the properties of the so-called canonical indices
introduced in this paper. The canonical indices are global characteristics of underlying
Stokes graphs. If sufficiently small in comparison with unity they allow one to apply safely
the JWKB approximation within. the so-called e-reduced canonical domains of a given
Stokes graph. The Oth canonical indéx for the nth energy level Stokes graph corresponding
to the harmonic oscillator potential is found to be eCAN = 0,678/(2n+1). If the application
of the rules is allowed then approximated matrix elements are obtained in an unambiguous
way and with an accuracy controlled by corresponding canonical indices. Several examples
of matrix elements are considered to illustrate how the rules should be used. Limitations
to the rules are also discussed with the aid of suitably chosen examples.

PACS numbers: 03.65.Sq

1. Introduction

Evaluation of matrix elements with the help of the JWKB approximations is one
of their main applications in quantum mechanics (see, for example, Landau and Lifshitz
[1] and Froman and Fréman [2, 4, 15] and the references quoted in the latter reference).
A modern use of the JWKB approximations (gzneralized to the form of the phase-integral
approximations [3, 8, 9]) to evaluate one-dimensional matrix elemznts has been origi-
nated by Froman and Froman [4]: The authors have given simple and elegant formulae
for calculating one-dimensional matrix elements for a single-well poten’ual in the JWKB
as well as in the higher order phase-integral approximations.

" However, still new modifications are being introduced to the method in order to
improve its accuracy. Recently, Streszewski and Jedrzejek [5] have evaluated the non-orthog-
onal matrix elements in the JWKB approximation using the Feynman path integral
formalism. They found that the integration prescription given by Froman and Fréman [4)
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had to be modified in some cases and these modifications greatly improved numerical
results for the potentials considered by the authors both in the case when the JWKB
approximation was used and in the case when the method was generalized to include the
higher order phase integral approximations.

. A by-product of the Streszewski and Jedrzejek paper [5] is a conclusion that the Fro-
man and Froman formula [4) cannot be considered as a general rule for matrix element
calculations in the JWKB approximation. On the other hand, operating with the JWKB
approximations themselves one cannot infer what is the proper way of using them in
integrations. This is, as it seems, why Streszewski and Jedrzejek used the Feynman path
integral for their studies of the JWKB approximated integrals. The Feynman path integral
method itself is suerly as reliable as simple enough to obtain the proper results for suffi-
ciently simple matrix elements at the JWKB level. But one can hardly imagine its effective
application to calculate more complicated matrix elements (for example, in the case of
many-well potentials) or when higher order phase-integrals [3] or generalized JWKB
approximations [6] are to be used. On the other hand it would be desirable to have some
general rules for evaluating a sufficiently arbitrary matrix element to an arbitrary order
of the approximation chosen and with controlled and good accuracy.

It is the goal of the paper to formulate such rules.

The starting point of our analysis leading to the rules are the exact solutions to the
Schroedinger equations found by Froman and Froman [3].

From infinitely many solutions to the Schroedinger equation having the Froman
and Froman form we select finite sets of them called foundamental solutions and defined
in Appendix 1 and we use them in 2 way formulated there (see also our earlier papers
[6, 14)).

The fundamental solutions can be given forms appropriate for the approximations
actually used i.e. the forms of the phase integral approximation [3, 8, 9] or of the general-
ized JWKB formula [6] or simply the form of the conventional JWKB formula (see
Al.17) in Appendix 1)

The fundamental solutions and their properties play the main role in the formula-
tion of the rules. In order to describe this role properly we have introduced a number
of notions, such as JWKB points of the fundamental solutions, their canonical points
and caponpical domains, their e-reduced canonical domains and e-reduced Stokes graph,
a JWKB approximation allowing Stokes graph, a canonical index of the Stokes graph
and so on, in terms of which we have described the properties of the fundamental solutions
relevant for establishing the rules.

All the notions mentioned above, the properties of the fundamental solutions and
the way of using them as well as all other key facts about the fundamental solutions and
their JWKB approximations relevant for the subject considered in the paper have been
gathered in Appendix 1. We have also formulated there a necessary and sufficient condi-
tion for a global application of the JWKB approximation (i.e. in the whole area of the

! In what follows we shall use a phrase “the JWKB approximation” in the sense defined by (A1.14)
which covers all the cases cited above (see (A1.17)).
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e-reduced Stokes graph). Therefore, the content of Appendix 1 should be regarded rather
as an essential introduction to the subject of the paper and acquainting with it seems to
be necessary (and sufficient) for understanding the basis on which the rules are formulated
on.

Safe applications of the rules call for checking that the conditions allowing such
applications are indeed fulfilled (see formulae (A1.19) and (A1.21) in Appendix 1). But it
is usually difficult to perform such a check explicitly (i.e. to find explicit forms of the rele-
vant canonical indices) and one is often left only with a belief that if performed the check
would be positive. Therefore, in such cases the approximations obtained from the rules
should be regarded rather as the optimum i.e. as the best ones if the JWKB approxima-
tions for the wave functions are to be used at all.

The paper is organized as follows.

In Section 2 the rules are formulated in general.

In Section 3 particular examples of nonorthogonal matrix elements between bound-
-bound states in the simplest case of the one-well potential are investigated. The aim of this
Section is to show how the rules work as well as to compare out results with those obtained
earlier by Froman and Froman [4] and by Streszewski and Jedrzejek [5].

In Section 4 more general cases of nonorthogonal matrix elements between bound
and unbound states are investigated in the presence of an additional potential well without
bound states.

In Section 5 we show how the rules can be applied when the generalized JWKB for-
mulae are used as the approximations.

The results obtained in Sections 3-5 assume that all the Stokes graphs relevant for
the considerations are the JWKB approximation allowing graphs (in the sense defined
in Appendix 1). This assumption allows to apply the rules safely.

Limitations to the rules are considered in Section 6. They arise when necessary condi-
tions for the rules to be applied are broken. This happens when some relevant pairs of
turning points are not canonically well separated (see Appendix 1 for definition). In some
of such cases the approximate JWKB integrations can be performed by breaking some
of the rules. In some others the JWKB approximations cannot be used at all. An example
of this situation is provided by the supersymmetric quantum mechanics [7, 10-12].

The results of the paper are summarized in Section 7 where some conclusions are
also drawn. '

2. The rules

The rules we are going to formulate are limited to approximate calculations of matrix
clements containing quantities of the following type:

M(x, djdx) = Z M (x)d*[ax", | Q.1
k=0

where M,(x), k = 0, 1, ..., n, are rational functions of x holomorphic in some vincinity
of the real axis. Such an assumption allows the asymptotic properties of M,(x) for x — oo,
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k=0,1,...,n not to be taken into account if the JWKB approximation of the relevant
matrix elements is ‘considered. On the other hand necessary properties of the derivatives
of the fundamental solutions and their JWKB approximations have been considered in
Appendix | (see Al.6).

The following is the Basic Assumption for our further considerations in this and in
the next Sections (see Appendix 1 Al.4-Al1.5 for relevant definitions): Each Stokes graph
is the JWKB approximation allowing graph.

As we have shown in Appendix 1 the above assumption is equivalent to the statement
that the turning points of each considered Stokes graph are canonically well separated
or that canonical indices of the graphs are much smaller than unity. Especially the latter
quantities seem to be extremely useful in practice since if known they allow us to estimate
whether the relevant calculations using the JWKB approximations can be performed at
all and, if so, with what accuracy.

" Usually, the canonical indices are not easy to obtain. To illustrate, however, their
usefulness we have calculated the lowest (0th) canonical index for the harmonic oscillator
to get for the nth energy level Stokes graph: eN = 0.678/(2n+1). It is seen that in the
case of the harmonic oscillator the JWKB approximations should give good results al-
ready for, say, n > 5.

The above Basic Assumption allows us in principle to use the JWKB approxima-
tions Cyp*®, r=0,1,..,n,k=1,..,p, and the corresponding &5*™ — reduced
Stokes graph S, in the same way as the fundamental solutions vp,, k = 1, ..., p, them-
selves are used together with their derivatives and with the Stokes graph S that corre-
sponds to them.

However, operating with vy ’s or their derivatives one must sometimes to appeal
to their holomorphicity at each turning point — the property which is not shared by any
of their approximations C,yp ~°. Therefore, to avoid possible confusions in such cases
as well as to have a clear insight into which operations and formulae are approximated
and which are exact we prefer to operate originally with yp,’s making the desired JWKB
approximations only in the final steps.

We are now ready to formulate the first basic rule for matrix element calculations
in the JWKB approximations:

(i) Keep the integration contour running through the canonical domains of the fundamental
solutions used to represent the physical wave functions in the matrix element integral (s).

However, the rule (i) although basic is far from being sufficient for writing unambig-
wously the desired approximation to the integral considered. In fact, we are faced with
the following situation:

a) there are many different but equivalent, exact integral formulae fulfilling the rule
{i) and representing the same matrix element;

b) the formulae differ by sets of the fundamental solu.ions they use as well as by
contours of integrations;

c) in different formulae their integrands can differ by their dominant behaviour in
the same canonical domains through which the integration contours run.
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It should be clear, however, that the best JWKB approximation for the considered
matrix element should be provided by the formulae which offers the weakest dominant be-
haviour of their integrands when the integration runs through the corresponding canonic-
al domains. Such integral formulae will be called dominant integral representations for
the matrix element considered. ’

On the other hand, the integral formulae with a stronger dominant behaviour of their
integrands should vanish if JWKB approximated since, otherwise, they would provide
stronger dominant contributions to the considered matrix element than it is allowed by
the property of the latter. Such integral representations for a given matrix element will
be called ‘overdominating’ representations.

Therefore, the following next rule should be applied when the JWKB approximation
is used:

(i) Choose the integral formulae offering the weakest dominant behaviour of their
integrands in the same canonical domains.

Nevertheless, both the above rules do not fix uniquely the ways of integrating with
the JWKB approximations.

A further selection of the best approximate integral formula can be done by analysing
the behaviour of its integrand at different regions of the real axis, when the integration
contour is deformed so as to run along the real axis (but passing, of course, above (or
below) classical turning points). Thus, for example, if some particular regions of the real
axis are classically forbidden for one (or both) of the integrated wave functions, the func-
tion(s) should increase (or decrease) exponentially in such regions when x increases
along the axis. Therefore, if the integrand of the approximate formula resulting from
the chosen integral representation for the considered matrix element behaves improperly
in the relevant regions of the real axis then such an approximate formula should be elim-
inated in favour of its alternatives.

Similarly, a proper behaviour of the integrand in the classically allowed regions should
guide us in making the proper choice between appearing possibilities.

Therefore, the next rule can be formulated as follows:

(iii) From varieties of possible approximate formulae choose the one with the proper
behaviour of its integrand (s) at classically forbidden as well as at classically allowed regions.

The rules (i)-(iif) formulated above are now sufficient for obtaining in a unique way
the JWKB approximation. for an arbitrary matrix element involving a quantity of the
type (2.1).

Let us note, however, that effective applications of the rules (i)-(ii) have to assume
that energy levels labelling the integrated wave functions have also been quantized with
the help of the corresponding fundamental solutions and the relevant quantization has
been performed in accordance with the rules (i)—(iii).

First of all it means that a necessary procedure of matching different fundamental
solutions has been performed in accordance with the condition that each fundamental
solution involved in the procedure has not left its canonical domain. As it follows from
Appendix 1 this condition can always be satisfied.
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The quantization condition can be then approximated according to our Basic Assump-
tion and used in approximate integrations of the corresponding matrix elements.

It means further that the accuraciés of both the approximations are strictly related:
one cannot expect a good JWKB approximation for integrals if it appears unsatisfactory
for quantization conditions.

It seems, however, that in genperal it is easier to satisfy the relevant conditions when
applymg the JWKB approximation to quantize energy levels than to calculate the relevant
matrix elements. In fact, the rules (i)-(iii) seem to exclude the existence of any good JIWKB
approximation for some particular matrix elements. even if the corresponding quantiza-
tion conditions can be obtained without troubles. A relevant example is considered in
Section 6.

3. Nonorthogonal matrix elements between bound-bound states

We are going to consider now so-called non-orthogonal matrix elements (see, for
example, Streszewski and Jedrzejek [S]). Such elements are labeled by energy eigenvalues
of two, in general different, hamiltonians. Therefore, Stokes graphs corresponding to each
energy are independent and can differ essentially from each other. In particular, relative
positions of sets of their turning points can be also arbitrary.

If the matrix elements corresponding to the case are to be JWKB approximated then
not-all relative positions of the relevant Stokes graphs are allowed. The allowed positions
are those which satisfy the following condition:

It is possible to deform the integration contour in a way being not only in accordance
with the rules (i)-(iii) of Section 2 applied to each (of the two) e-reduced Stokes graph sepa-
rately but also in such a way that none of the ‘holes’ (of any of the two ¢-reduced Stokes
graphs) lying on one side of the integration contour overlaps any ‘hole’ lying on the other side
of the contour.

It is assumed that this condition is satisfied in this and in Sections 4 and 5. This assump-
tion allows us to use rather the Stokes graphs themselves than the corresponding e-reduced
graphs to characterize cases we are going to consider.

Let p,(x) and w,(x) be the normalized eigenfunctions (with respective eigenvalues
E, and E,) corresponding to the hamiltonians H,; and H, defined by the single — well
potentials V;(x) and V,(x), respectively. We shall consider the following matrix element:

+ w0
My, = [ p(x)M(x, djdx)p,(x)dx, (.1
where M(x, d/dx) has the form (2.1).

3.1. Nested position of classical regions

As the first example of (3.1) we investigate the one corresponding to Fig. 1 which
shows the relative position of the potentials V; and V,. To evaluate M, using the funda-
mental solution representations for y,(x) and y,(x) we have to deform the integration
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contour in (3.1) from the x-axis going around the classical turning points a,, b, k = 1, 2,
which are singular for the corresponding fuctions w,(x), k = 1, 2, defining the fundamental
solutions (A1.7).

For the time being we shall limit our considerations to the JWKB approximations
defined by the cases 1 and 2 of the formula: (A1.17). The case 3 will be discussed later
(see Section 5).

Let Fig. 2 represent the Stokes graphs corresponding to Fig. 1. We deform the inte-
gration contour in (3.1) in the way shown in Fig. 2 where the points 4; and Ay are taken
at the boundaries of the ‘holes’ of the e-reduced. Stokes graph S, corresponding to the
graph S, (solid lines in'Fig. 2), i.e. we have:

AL - _tw®
My =(f + 1+ JIvi(oMG, dfdx)yy(x)dx. (32)

According to the rules (i)-(iii) of Section 2 we should substitute now y;(x) and ,(x)-
by their corresponding fundamental solution representations (defined by the Stokes graphs
of Fig. 2) for which the points of the integration contour in (3.2) are canonical. The sets
of the fundamental solutions relevant for the case are: {y, 1, Yir» Yiu» Yinh kK =1, 2.
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Fig. 1. The nested position of the potentials ¥, and V;

Fig. 2. The Stokes graph corresponding to Fig. 1
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TABLE I
Canontical Boudnaries
domains
Dir my, Mg, N
Dg,r 5"’ l_‘" Mk
Dk,U Ikl g
Dk,D Ik; ng

We have of course y, = Gy 91 = Cer¥ir (see Appendix 2) where G, and Cip,
k = 1,2, are some normalization constants and the equations Cy;y; 1 (*) = Cyryr(*)
mean the quantization conditions for the energies E,, k = 1, 2.

The canonical domain D, x for the respective solution y, x, k = 1,2, X=L,RU,D
contains the sectors X where the solution is defined and is bounded by the correspondmg
Stokes’ lines given in Table L.

Therefore, according to our Basic Assumption we should make the following replace-
ment in the first and third integrals in (3.2):

Covit®(x), xe(—ow, Ay,
1»"l(x) - {Cl Ry),WKB(X), xe (Am + w)’

and

C,, LMmmi'Pz L (x) xe(—o0, 4p),
M(x’ d/dX)ipz(X) - {CZ RMmodwlwa(x) X e (AR’ + w)’ (3'3)

where:
M) = 3 MiICEG3), (34

with C{ (x), k = 0,1, ..., n, defined by (Al.33).

However, the second integral in (3.2) can be represented at least in two ways. First,
the integration along K can be broken at the point x, into two parts (see Fig. 2) and then
we can make analogous substitutions as follows:

5 [%M#’z]lwudx = CI,LCZ,L‘! W:XKBme'P;v{KBdX,
Ky 1

xs ['P1M ’l’z]lw“dx = Cx,ncz,nxj V’{XKBMmod'P;YtKde- (3.5)
2 2

Let us now take the following representations for the JWKB factors y}x> of the
fundamental solutions y,x, r = 1,2, X =L,R, U, D:

Pir B(x) = Q7 V4 (x) exp [~ iw(x)],

Yru (%) = Q7 H(x) exp [+iw,(x)],
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PinEB(x) = plu B(x),
PI¥R(x) = Q7 ) exp [—in ()], =12, (6

with iw,(x) = | Q}/*dy defined in the x-plane with the cut along the line (2,,+c0) and with

ar
x
ivx) = { Ql/%dy and the corresponding cut at (—oo, b,). Taking also into account the
- b,

approximate quantization conditions: iC,y = exp[+iw(B)ICir, k = 1,2 (see Appen-
dix 2) we get for M13*®;

Axr, + o0
M = —CyiCo( _I + i» + Af )(Q1Q2) " * exp [—i(wy +w2)IMpoedx.  (3.7)
In the second way of the integration we can write:

5 V’xszdx = CyL S (23,0.91,0+%1,L¥1,0)Mmoa¥24X, (3.8)

where o1 = o 1, yop is the canonical coefficient obtained with the aid of (Al.16).
Next, we perform the integration in the second term (= I,) in (3.8) by deforming
K into K (a path complex conjugate to K) and after that we repeat the procedure of re-
placmg the fundamental solutions by their JWKB approxnmatlons as follows (note that
A ® =1, see Appendlx 2): »

I, = }‘((“1,LW1,0+51.L'P1,D)M'P2dx = oy, 1"; Yy,uMydx

+a,1’]‘ j_- 'PLDM"pzdx
- K
and

IJzWKB = {iCZ,L‘ 1‘:‘ +C; r €Xp [+iW; (23] iz‘. } (Qle)‘_ 1% exp [+i(wy ~w2) 1M oadx

—{iCop § +Crpexp [+iwz(52)] i }(2102) 7 exp [+i(w; —w2)IM oad

K, K2

= iCyy I[(Q@QZ)‘”‘ exp [+i(w; — w2) M poadx, (3.9)

where I' = K— K (—~K means the integration along K in the opposite direction) and
wE(), i = 1,2, mean the corresponding values taken above (+) or below (—) the cuts.
Let us note that the deformation of K into K in (3.9) is allowed since the functions v p
and v, are holomorphic in each classical turning point. Also each substitution: y — y'™ "
has been performed in the canonical domains of the corresponding fundamental solutions.
We get finally for -Mi3<":

+

MJWKB = =C; ch L( J + j ) (©:10,) V4 exp [—i(wy +w)IM yoadx

- 00

+iCy 1 Cayx | (Qxin)- Z exp [+i(wy —w2) M oadx. (3.10)
r
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Both the formulae (3.7) and (3.10) fulfil the rules (f) and (#if); But they differ of course
by the behaviour of their integrands in the domains D, , and: D, p, k = 1, 2. (Note, that
the integration in (3.7) along K can be substituted by the integration along K with the
same integrand). The behaviour of the integrand in the second.integral in (3.7) is dominant
in the domains D, x, k = 1,2, X =D, U, in cdmpa.rison with the corresponding inte-
grand in (3.10) (the integration along I' = K—K). To see this let us take any point. x in
the secotr U such that x e ¥,y = U 0 KL ™ A Ki)®™  Ki23™. In each ‘of such
points the solutions y, x, X = L, U, D, can be approximated by their JWKB factors
(3.6) since the conditions (A1.22) are fulfilled for such x (by our Basic Assumptzon) How-
ever, for the points x we also have y, 1 = &, 19, +&  ¥;,p and hence pI " = ag yioe
13, ¢ But, when xe V,, then i = o850 140 xil i) and

¥I"s® has to be only an £A.part of p"KB and also of KB in ¥,y ie. [pE
CAN"/’JJWIFB for xeV,y. Therefore, the integrand in the last integral in (3.10) is
also an ¢“A.part of the corresponding integrand of the middle integral in (3.7). But the
integrations along K in (3.7) and along I' in (3.10) define the same integral the order of
which has therefore to be determined by the last term in (3.10). This is. in fact what the
rule (ii) says. ’Iherefore the accepted formula has to. be (3.10) and the mnddlc overdomt-
nating’ integral in (3.7) has to vanish (see the example discussed by Froman and Froman [4)).

The formula (3.10) is well known and was first. obtamed by Froman and Froman
[4] (see also Streszewski and Jedrzejek [S]) who also considered its alternatgve obtained
by the permutation 1«2 of the indices in (3.10) since My, is symmetric under such
operation. However, the approximation- (3 10) changes under thé permutation since the
Stokes graphs in Fig. 2 are not symmetric under the exchange 1« 2. Therefore, the new
formula obtained in this way is indeed different from (3.10). However, it cannot be better
and in fact it is excluded by the rule (iii). To see this we should note that we can perform
the desired integrations in (3.10) just along the cut (a,, b,) in both the cases, deforming
properly the closed contour I'. However, the function, exp[—iw,(x)] in (3.10) increases
and decreases exponentially at the segments (a,, a,) and (b,, b,) of the cut, respectively,
if x increases through the segments. Such a behaviour is. expected and correct: since these
segments are classically forbidden regions. On: the other hand, the behaviour would be
quite opposite i.e. wrong for the function exp[+zw2(x)] which would appear in (3.10)
after the permutation.

There are possible yet similar mutations of the formula. (3.10). However, all of them
are excluded due to the wrong behaviour of their integrands in classically forbidden
regions.

Let us note further that the normahzatlon constants :Cy ;. and C, ;. can: be readily
obtained from (3.8) by putting there ¥, = ¥,, M =1 and MIY<® = 1,

Finally, the accuracy of the approximation (3.10) can be esu_matcd ‘with' the help
of the full series (A1.8) (see Appendix 2). The measure of this accuracy (see (A2.5)) de-
pends explicitly on the energy levels labelling the matrix elements M. This is in contrast
with the form of the approximation (3.9) itself suggesting the intensitivity of its accuracy
to the energy levels. In fact, as it follows from (A2.5), the. accuracy: of (3.9) should be
the worse the lower energy levels label M,,. ’
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3.2. Overlapping classical regions

As a second example of the matrix element (3.1) let us consider the case defined by
Fig. 3 (the case (b) of the Streszewski and Jedrzejek paper [S]). The canonical domains
D, x for the relevant solutions v, x, k = 1,2, X = L, R, U, D, remain, of course, unchanged
(see Table I). However, we cannot apply readily the formula (3.10) to the case since it
causes exp [iw,(x)] to increase at the segment (b;, b,) i.e. to behave incorrectly there.
Therefore, to obtain the properly approximated integrand in (3.2) we should integrate

according to Fig. 4 to get:

xq

X1 B
§ p My,dx = Cl,ch,L[al,LAf vi,uMy, dx+ay @ | vy, oMy, pdx]
K L

x2 AR
+03005,.C1,LCoL ig YoMy, ydx+Cy gCo 1021 j P1rMp, ydx
X2

X1 B
+Cy 1 Conlyn § wi,pMys 1 dx+,; 10 § v1,pMy; ydx]
Ar X

X1

x2 AR
+a1,08;,.C1Con g ¥1,uMy2,0d%+C1 gCaon¥ 1 § Y1 RM¥2,0d%

X2
x3
+2Re{ot; 1221Cy 1Cop § ¥1,uMY2,udx}. ‘ 3.11

The above expression is exact. According to our Basic Assumption all the fundamen-
tal solutions present in each of the integrands in (3.11) can be substituted now by its corre-
sponding JWKB approximation. However, we can first get rid of the last term in (3.11)
putting x, = x, in it. Making this and the desired JWKB substitutions as well as using,
as usual, the approximate quantization condititons we get:

1'{ [9:1Myp,dx]¥*® = iC, 1 Coy izf: (©102) M* exp [+i(wy — w2)IM oadx, (3.12)

v
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‘ \
\
&

]

.

/
/
\ /
\ /
A 7
_,/
1
]

%@

,‘,__7/

o

I
I
|
1
b

Fig. 3. The potentials ¥; and V, with overlapping classical regions
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p/m x
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K111
X
2 7 &
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%a [] 7 § 1
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K'12.2)
0. 9 8 Re x
o — -
a g n N| 7 5 8
4
% 13 12 1 Re x
7 a« 0p 7 76 T

Fig. 5. The Riemann surface of (Q,Q.)~'/* with the integration contours corresponding to the cases
shown in figures 1-6

where the contour K’ is closed in the corresponding Riemann surfaces for the functions
(0.0,)" "%, Q1'% k = 1, 2. The Riemann surface for (Q, Q,)~"* is shown in Fig. 5 (where
K' is shown as the solid line). On the surfaces the integrand in (3.12) is the uniquely defined
function if the approximate quantization conditions [Qi/* = Qn+1)ni, k= 1,2 are
I

also taken into account (I', runs around the cut (4, b,) clockwise). The Riemann surface
for (Q,0,)~"/* consists of the four cut x-planes (numbered from 1. to 4. in the figure)
which are sewed along the edges carrying the same numbers (» — for the upper edges
and 7 — for the bottom ones). The Riemann surfaces for the functions Qi/%, k = 1,2,
are obtained by cutting the x-plane along the segments (a, b,), k = 1, 2, correspondingly.
For the case just considered we should put in the figure: « = a;, f = a5,y = by, 6 = by,
Only two of the sheets in Fig. 5 (i.e. 1. and 3.) are needed to close the contour X'.

Let us note, however, that in the previous case of the integration, formula (3.9), it
was sufficient to consider only the first sheet of the Riemann surface in Fig. 5 (where the
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points a, f, 7, 6 should be then identified as « = a,, f = a,, y = b, and 6 = b,). The
corresponding contour I' is also indicated.

The Riemann surfaces for Q}2, i = 1,2, have similar structure and are obtained
by cutting the x-plane along the segments (@;, b), i = 1, 2, correspondingly. The numbers.
in the square brackets shown at each of the contours K and K’ in Fig. 5 indicate the sheet
numbers on the corresponding Riemann surfaces for 0/, i = 1, 2, on which the contours
(or their parts) have to lie with the first number corresponding to Q1'%

The formula (3.12) is identical with that obtained by Streszewski and Jedrzejek [5T
for their case (b). Again, the proper behaviour of the integrand in (3.12) at the segments.
(a., a;) and (by, b,) has fixed the formula upambiguously.

Our further investigations of other matrix elements will be simplify greatly by noticing.
that the formula (3.12) can be obtained also by putting x, = x, = B in (3.11) (i.e. by
putting zero the relevant integrals in (3.11)) and then substituting the JWKB factors into
the remaining integrals. Formally, such a procedure is not allowed since the points lying:
in some vincinity of B are, for sure, not the JWKB points of the fundamental solutions
L and y, g, k = 1, 2. Nevertheless, the final result in (3.12) is such as if they were.

3.3. Non-overlapping classical regions

. The matrix element (3.1) for the case shown in Fig. 6 (the case (a) of Streszewski and.
Jedrzejek [5]) can now be readily written down as follows:

AL
M,IVZIKB = iCI,LCZ,L{i j exp [—i(W1+W2)]

[+ +
+i‘j; exp [—i(w; +w,)]+ A_[ exp [ —i(w; +w,)]+ x'[' exp [+i(w; —w,)]

+ J exp [=iw =W2)]} (©102) ™ Modx, (3.13y

with the contours K; and K, shown in Fig. 5. The functions w,(x) are branches of w;(x)
with the cuts along (— o0, b)) and such that wy(x) = wi(x), i = 1,2, for Im x > 0. The
points A4;, B, C, Az have been chosen as in the previous formulae i.e. at the boundaries
of the corresponding ‘holes’ of the §“*M-reduced Stokes graphs.

hm x

A Sy 5 \8 ¢ Xa, b, 5 Ag
+- S
R’ - \Ki’__\
0

Fig. 6. The Stokes graph corresponding to non-overlapping classical regions of the potentials ¥; and V2



688

4. Matrix elements between bound and unbound states

There is nothing special in applying the rules (i)-(iii) of Section 2 to matrix elements
between the bound-bound states. The rules can be applied as well to calculate approxi-
mately corresponding matrix elements involving also unbound states. The relevant consi-
derations introduce, however, an additional aspect of the matter i.e. an unquantized char-
acter of the unbound state energy. This causes, as we shall see, that the relevant integra-

tion contours cannot be closed.

To see this let us consider the matrix element (3.1) defined by the potentials sketched
in Fig. 7. In comparison with 'the previous cases we have to consider the fundamental
solutions y, - and y, p- rather than v, g. (see Fig. 8). The wave function y,(x) is there-

fore given by thé following chain of equalities:
(%) = P2,0(X) = 192, u(X) +T L2 p (%)
= (0z,Bz,u &2;L")72,U")V’2,u"(x)

+(&a,1P2, 0+ %2, 1Y 2,0)W2,0(X)s

\ &

Y
\\ ;\J U]
| b
/ \
\ | A TN &
\\ = I‘! V 3\\
s\L I’ ; ; \~“_ x
a, . g by By K2

Fig. 7. The case of the potential ¥, withont bound states
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.'Z \
FEEA
Y
X . \ -
2
7 \x Rex
LAY ’ ')
B \b, c,?\gz K
f 2 ’/ R
oy
e/
’ »
80 1 0
1

Fig. 8. The Stokes graph corresponding to Fig. 7

(4.1)
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where o, L'(“ o2 L/U’-»D) -Ba, U(— o3 U/U”—'D") and’ Y2,ur (=, u/pu-»uu) can be found
with the help of the formulae (A1.16). The x-plane for the epz-fundamental solutions is
cut as in Fig. 8 and the solutions v, y~ and v, p. are:

Pa,u(%) = Q7 " exp [ —iuy()]iz,ulx), xeU”
and

Y2,0{%) = P,y(X), xeD” 4.2)

where uy(x) = | Q3/*dy is defined in the x-plane with the relevant cuts along (-0, b,)

c2

and (c,, +). The correspondmg representations for the remammg y,-solutions are
given as before by (3.4). The coefficients a; 1., f,y-and y,, in (4.1) are given in the JWKB
approximation by:

AW~ 1 and BN = —ya00 = —iexp [iwy(cy)]. (4.3)

Analysmg, in a way similar to that in Section 3.1, mutual relatxons between JWKB

approximations to the solutions ., ..., P2p- one finds that o3 is an &5 "-part

of Y8 in Vi = Ksai” 0 KCA""‘) N K5A™ A U’ (with the opposite relation in
Vo). Similarly, yho" is an sCA” part of y7%® in V, . = U”  KSAN® KCAN("’
and vice versa. Also, y7p- and yy'n are e-parts of each of the approximations Poue
and P in Vi,p = I A KSAN® A KEAN™ A KSAGY A K5ADY°, where I is a stripe
shown in Fig. 8.

Writing the desired JWKB approximations and giving them elegant contour integra-
tion forms we have made use of the possibility of adding to (or neglecting in) the dominant
integral formulae the following terms:

a) any eS_part of these formulac i.c. any subdominant one and

b) any ‘overdominating’ integral formulae since the JWKB approximation to the
latter has to vanish.

We have considered all possible relative positions of the classical turning points

relevant to the case. The corresponding results are collected in Table IL

TABLE II

Case | z { g ! Y 4 A JWKB approx1mat10n

1 a; b1 . az b; C2 IA+IBC+11+IP +Is

2 a; ’ as bl bz Cz2 IA +Iz + +Io

3 as a; by b, 29 IA+IP + I

4 a; a:z b, b, C2 IA+Iz,bls+I "+ 1s

3 az a; b2 by, . c2 L+ +Iz'b,;+ls

6 @ { b | & by ez Li+Ipc+I+IP+1s

7 az a, b2 €2 by - I+ 1

8 az b, a c2 by IA+I;’+ L

9 az b, 2 ay b, I+IP+ 1
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A typical example of the corresponding calculations is provided, for example, by
the case 5 of Table II (see Fig. 8). By reasoning as in the case of the overlapping classical
regions of Section 3 we obtain:

B

.f Y My,dx = C1L{°‘2L j PiMy, pdx+&; 10 .['/’1 pMy,,udx

X1

X1 X2
+oy 1%z 1 Bj Y ,uMyypdx+a I v1,uMBYs,y + 792, u)dx
4 X1

B’

oy § v1,uMBya,u+yy2,u)dx+c.c.}
x2 N

+{Cxf’ 1"; Yi,RM Yy, yrdx+c.c.}

¢ .
+Cyr ,!, Y1 xMBys,y + 792, u)dx, 4.4)

where c.c. means complex conjugation of the predecessors in (4.4) i.e. the corresponding
integrations below the real axis and where f = a, 1.+ 10 by P = &a,0% prur o
and B = o 1.B2y 482172, These coefficients have the following JWKB forms:

BVEB — 14 exp [iw; (by)—iw; (b)),
and
PP = iexp [—iw;(c2)], B™*" = —ifexp [iwz(co)]+exp [iwa(c)]}.  (4.5)
The point x; in (4.4) lies in U’ n KSAN™ ~ K$AN® A RS20 and x, —in K5hp™
A K20 n Z. Let us note that we could neglect the second term in the fifth integral in
(4.4) but we cannot do it in the integrations between x, and x, since both the integrated
terms are comparable in this region. Therefore, we shall also keep up the last term in (4.4)
continuing in this way the integration contour between x; and x, up to the point B'.

For an analogous reason we shall also add to (4.4) a term Cy 1,8 ? vy uMy, ydx
(+ c.c.) which is subdominant in comparlson with the third integral in (4 4). Similarly,
we shall add the term C,,p"*® j PIEBM poat iPdx (4c.c.) which should vanish
as being overz?mtnatzng in comparlson with the proper JWKB approximation to the

lntegral Cl Lﬂ I Y, LM'I)Z de

Collecting all these terms and replacing each fundamental solu’uon in (4.3) as well
as each coefficient present there by their JWKB approximations we shall arrive at
the formula given in Table II. The remaining formulae in this table can be obtained in
a similar way. :
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The integrals appearing in Table II have the following forms:

A
IA = - I Gl—zdx,
IBC = — IG~ dx,

Ipe = 2 cos wy(b,) exp [—iw3 (b,)] j' Fzdx,
I = 2 cos wy(by) exp [ —iws(by)] j' G~~dx
I, =i Fhdx, I, =i | Fidx,
K1 KoF’
Ig:bis = 2i cos w,(b,) exp [—iw; (b,)] _f G12dx,
K P’
=i | Fhdx, I} y FZdx, IS =i [ Fidx,
K»P KsP’
Is = 2 cos wy(b,) exp [ +iuy(b,)] _[ G13dx,
I, = 2i cos wy(b,) exp [—iw; (b,)] f G 5dx,
Iy = 21 cos wy(by) exp [ —iw; (by)] _[ G 3dx,
Io=1i [ {Fa42coswy(by)exp [—iw,(b;)]Gy,}dx,
KPP’ +Ko :
where
FH(x) = Cl,L(QlQZ)—1/4Mmod exp [ Li(w, —wy)],
and

, Giz(x) = ClL(QlQZ)—1/4Mmod exp [ Li(w,+w))], 4.7)

and F~ (%), s G%(x) can be obtained from (4.7) by suitable substitutions wy(x) by, wi(%),
i=1, 2

All the contours in (4.6) are shown in F1g 9 where the Riemann surface of the func-
tion (Q,Q,) % is sketched. The way of constructing it is completely analogous to that
of Fig 5. Since the forms of the contours in the Riemann surfaces of the functions Q;/?,
i = 1,2, are the same we have collected the numbers of the sheets corresponding to each
contour in Table III (in square brackets) with the first number corresponding to the Q1'% —
Riemann surface. The numbers + 1 and +i also shown in Fig. 9 and attached to the arrows
pointed to the corresponding edges of the cuts should multiply the function (Q;Q,)™"/* in
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Fig. 9. The Riemann surface for (Q,Q,)~ */* with the integration contours corresponding to the potentiais
shown in Fig. 7

TABLE III
Sheet Sheet
number of Contours number of
(Q. Q)M :/2 Q;lz
1 K., K¥, kP, KV, K, 1 1
K 2 1
K, K, 1 2
3 Ky 2 1
4 ).<3 2 2
Ks 1 1

the integral formulae (4.6) if one wants to perform all the integrations in the first sheet
of the figure. Of course, the signes of the functions wy(x), i = 1, 2, in the exponentials
in (4.7) should then be also suitably changed according to Table III.

Two comments about the contours with the superscripts P and P’ are in order here.
First, these contours are not closed: they start and terminate at the corresponding points P
and P’ but the corresponding integrands do not return to their initial values in these points.
Of course, such a behaviour of these integrands is related directly to an unquantized char-
acter of the energy E,. It causes that the total change of the function w,(x) going once
round the cut (a,, b,) is then rather arbitrary than equal to (2n+ )ni. Secondly, the points
P and P’ (as well as the points 4, B, C and B’, C') are not chosen arbitrarily. They are fixed



693

and have to lie at the boudaries of suitable ‘holes’ of the corresponding $*™ — reduced
Stokes graphs S, and S5, (see Fig. 15).
On the other hand, the remaining contours are closed (some of them at +0).

5. Matrix element approximated with the generalized JWKB formulae

The examples considered in Sections 3 and 4 should be convincing encugh in showing
that the rules (i)-(iii) of Section 2 allow to obtain explicitly the JWKB approximations
for each particular matrix element as well as to demonstrate some technicalities of the
corresponding procedures. Therefore, the present Section is devoted only to a discussion
of some complications arising when the generalized JWKB formulae [6] a1¢ used to approx-
imate the integrated wave functions.

In spite of the apparent complications arising in such a case the rules (i)-(iii) as well
as the corresponding integration procedures remain unchanged. Consider, for example,
the matrix element (3.1) defined by Fig. 3. In oider not to complicate excessively our
further considerations we limit ourselves to the case of the 1th generalized JWKB formulae
with the corresponding Stokes graphs shown in Fig. 10. Only the system of the cuts for
the function (Q,Q,)”'/* can affect the formulae (3.12). However, it causes merely the in-
tegration contour K’ in (3.12) to run in a way shown in Fig. 11 where the Riemann surface
corresponding to Fig. 10 is drawn. The subsequent parts of the integration contour are
numbered in Fig. 11 by the Roman figures.

Fig. 10. The Stokes graph corresponding to Fig. 3 with the 1th generalized JWKB formulae used as
approximations

6. Limitations to the rules

Applications of the rules (i)—(iii) in Section 2 can fail, in general, when the correspond-
ing integration contours cannot be drawn according to the prescriptions provided by
the rules. First of all this can happen if Stokes graphs corresponding to considered cases
are not the JWKB approximation allowing graphs (see Appendix 1). An example of
such Stokes graphs is considered below. They appear most likely for lowest energy levels
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¥Fig. 11. The Riemann surface for (Q; Q,)~* with the integration contour corresponding to the case
shown in Fig, 10

but also for these levels which lie closely to the bottom of some potential well but below it.
In such cases the relevant ‘holes’ of the e-reduced Stokes graphs overlap making impossible
the canonical communication of some of the relevant e-reduced sectors. A consequence
of this are false results of the analytical continuations of the corresponding JWKB approx-
imations and, therefore, an application of the rule (i) must lead us to wrong results also.
However, there are also matrix elements where the rules cannot be applied successfully
even if the Stokes graphs corresponding to such cases are the JWKB approximation allow-
ing graphs. A simple situation of this kind is provided by the case of non-orthogonal
matrix elements with the overlapping classical regions considered in Section 3.2. If the
classical turning points @, and b, are too close to each other then the ‘holes’ corresponding
to them and lying in the different e-reduced Stokes graphs S, , and S, can overlap (see
Fig. 12). Consequently, the formula (3.12) cannot give a good approximation to the
integral considered in this case. However, it can be modified. The price payed for this
is to resign from satisfying the rule (iii). Consequently, the property of the approximate
formulae to be unique is now lost. '
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Fig. 12. The Stokes graph and integration contours in the case when some of the rules (i)-(iii) of Section 2
cannot be applied

The integration can be performed in this case according to Fig. 12 leading us to the
following approximate formula:

Ar
,45 v My,] TWKBdx = iCI,LCZ,L{ éf , exp [+i(w;—w,)]

+ [ cos(w,—wy)+ { exp [—i(w,—w))]} (0102) Y*M,qdx. (6.1)
. £y

K2

Of course, the integration contours Ki' = K;—K,, i =1,2,3, cannot be closed in
6.1).

There are yet possible formulae other than this given above. They cannot be exclud-
ed with the rules (i) and (i) only. The choice made above is, therefore, arbitrary. The
proper choice can be done in such cases only with the aid of the numerical tests.

As we have already mentioned there are matrix elements for which none of the above
procedure is possible. A corresponding example is provided by the broken supersymmetric
quantum mechanics (SUSY QM) [7, 10-12] if matrix elements between the ground-state
and any other eigen state of the underlying theory are considered. ‘

In its simplest version the potential of the broken SUSY QM is given by V(x)
= (1/U'(x)]>—(1/2)hU"'(x) where superpotential U(x) = x(x2—«?). The potential V(x)
has then a form shown in Fig. 13. It is known from the theory of the broken SUSY QM
that the ground-state energy level E, lies between zero and the higher local minimum of
V() (see Fig. 13) and its value is exponentially small in % (if 2 < U(x;)— U(x-) [7]). The
Stokes’ graph corresponding to the level looks like in Fig. 14. The remaining energy
levels all lie above the higher minimum in Fig. 13.

Consider the following matrix element:

B
J Ve, Mygdx, (6.2)
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Fig. 13. A typical potential of supersymmetric quantum mechanics

imx

Fig. 14. The Stokes graph corresponding to Fig. 13 with the indicated ‘holes’

with E > E, (see Fig. 13). The experience gained from the previous examples suggests
to deform the integration contour from the real axis to the contour K and next to make
use of the fundamental solutions yg, x(x) and ygx(x), X =1L, U, D", R, (corresponding
to the Stokes’ graph in Fig. 14) in the way similar to that leading to the formula (3.10).
It demands, however, to express the fundamental solutions yy,; and yxr by the funda-
mental solutions yyy, X = Eo, E, Y = U’, D’. There is nothing particular in such a pro-
cedure when the solutions ygy, Y = L, U’, D', R, are considered (with E > E;). However,
considering the solutions gy, Y = L, ..., R, we have to calculate quantities such as
XEoL-ur OF XEo,ur—p (s€€ Appendix 1). Approximating next (6.2) by the JWKB formulae
we would like to put: yhow = fevp = 1. However, it would be wrong. These
quantities cannot be approximated in this way. The reason is that the pairs ¢, ¢ and a, b
of the singular points lie too close to each other (¢~ x4 +id, ¢~ x4—i5, a~ X-—1id,
b~ x_+1i5, where 6% = h/(2/3 a), if h <2/3a® ~ U(xy)— U(x-); see Giler et al. [7]).
Therefore, the pairs of the singularities at ¢, ¢ and a, b contribute substantially to yg, -y
and yg, vp- correspondingly, strongly deviating the values of these quantities from unity
(see Appendix 3 for simple estimations). Speaking in other words it means that the canon-~
ical index of the Stokes graph in Fig. 14 has to be greater than unity.
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One can check, on the other hand, that there is no way of expressing (6.2) in terms
of the solutions gy, Y = U, D, U’, D', eliminating simultaneously both the quan-
tities yg, -y and yg,u-p from the corresponding considerations.

It follows, therefore, that in the considered.case one cannot perform a.good JWKB
approximations in (6.2) since the relevant. integration contours have to pass the regions
of overlapping ‘holes’ & and h of the e-reduced Stokes graph corresponding to the graph
in Fig. 14.

Let us note, however, that the corresponding quantization condition for the energy
E, can be written in such a way that both the troublesome quantities ygz, 1.¢: and xg, -
can be get'rid of it. A different matter is that making the usual JWKB approximations
in the quantization condition we would obtain a result being in accordance with the assum-
ed accuracy of the method (i.c. zero) but too crude in comparison with the actual value
of the level [7].

6. Summary. comments and conclusions

In this paper we have formulated the rules for the matrix element calculations. in the
JWKB approximation (with the extended meaning of the latter — see footnote in. Sec-
tion 1).

The necessary and sufficient conditions relevant for applications of the rules have
been formulated in Appendix 1. The conditions have been based on the properties of
the canonical indices of the Stokes graphs.

The canonical indices being global characteristics for the Stokes graphs have appeared
to be extremely useful as suitable quantitative estimators of the JWKB approximations.

The examples of matrix elements we have ‘considered in the paper illustrate the fol-
lowing general procedure which has to be applied if the results obtained with the rules
are to be under a control:

1. check that canonical indices (up. to a desired order) of the considered Stokes
graphs are sufficiently small in comparison with unity;

2. apply the rules (i)-(ii{) of Section 2;

3. if the considered matrix elements are the non-orthogonal ones check additionally
whether the property of Section 3 is fulfilled.

The following comment about the canonical indices seems to be in order here. We have
found the Oth canonical index for the harmonic oscillator. In general, however, the indices
can be difficult to find. On the other hand it seems that even the values of the integrals

D;
| lwQ@Y?dx| calculated along some suitably chosen canonical paths which do not neces-
Dy

sarily extremize the integrals can provide a good portion of information about possibil-
ities of applying the relevant JWKB approximations.

Another comment is related to the final integration contours. As it has been. ‘showst
in Section 4 we cap make use of both the subdominant behaviour and the ‘overdominant®
one of some integrals in order to give the approximated matrix elements compact and
elegant forms of contour integrations. However, the closed contours appear rather rarely
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and, in fact, only when they round the classically allowed region of the quantized poten-
tial well. Therefore, for matrix elements with both energies unquantized (but with finite
limits of integrations) none of the integration contours will be closed.

If the tests suggested by the points 1-3 above fail for some of the points one has to
proceed in different ways. One can apply as in Section 6 only some of the rules expecting,
therefore, the worse results as the price of this.

However, it can happen that one can also obtain good results applymg all the. rules
even if such disadvantageous situations take place. This can happen, for example, if the
integration contours run through the regions containing only turning points with well
canonical separations. In such cases the relevant accuracy is determined rather by less
global quantities such as canonical indices of the canonical paths. Therefore, a detailed
examination of such seemingly untractable cases can reveal possibilities for applying the
JWKB approximation with a good and controlled accuracy.

Finally, it should be stressed that the conditions for the JWKB approximation to be
applied formulated in Appendix 1 are valid also when any quantum-mechanical quantity
are to be calculated in this approximation.

I would like to thank dr P. Kosifiski for many valuable discussions as well as for
careful reading of the manuscript.

APPENDIX 1

We summarize here the main ideas and properties of the Stokes graph and of the
fundamental set of solutions it defines. We also introduce in this Appendix the notions
of the JWKB points of the fundamental solutions, their canonical points as well as several
other important notions which are widely used throughout the paper. The lack of the
satisfactory references we could referred to is the reason for such extended discussion of
the underlying notions as given below.

Al.l. Fundamental solutions to the Schroedinger equation
Consider the Schroedinger equation:
¥'(x)—g(x)p(x) = (ALD)

where g(x) = 2m(V(x)—E)/h%. Tt has been noticed by Fréman and Frdman [3] that the
following substitutions:

p(x) = Q74 (x)p(x) (A1.2)
and:

(o, ) = | Q()dy, (AL3)

with g(x) as the new wave function and with £ as the new independent variable in (A1.1),
do not change the form of the Schroedinger equation i.e. for g(£(x)) = @(x) we have the
following equation:

P& — (1 +0())p(x) = 0, (Al.4)
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with ,
W) = (@-0)g+0~*d*aHoM* (AL.5)
or
o(x) = (9— Qg +Q > *(d*|dx")Q ™%, (AL1.6)

where f(¢() =), f = ¢, Q.

The function Q(x) in (A1.2) and (A1.3) can be an arbitrary function of the complex
variable x (holomorphic or singular). However, for simplicity, we consider Q(x) (as well
as g(x)) to be a meromorphic function but holomorphic in the neighbourhood of the real
axis.

The zeros of g(x) and Q(x) are singular points for the function w(x). They are called
turning points and generalized turning points respectively. The real turning points are
called classical turning points.

Let {x;: Q(x;) = 0} be the set of zeros of Q();). The lines Re j"Q”Zdy = 0 (for each
x;) are called the Stokes lines. A set of all the Stokes lines is ca]l::‘d a Stokes graph.

Let a domain D = {x: o6Re ~i"Q”zdy < 0} do not contain any Stokes line for some
x; and ¢ = +1. Such a domain w1l] be called a sector. For each sector D the followmg

solution of the equation (Al.4) can be constructed [3, 13]:
@p(x) = exp [+o j Qllzd)’]XD(x)9 (ALT)
xi
where

1) = 14— f @Q""*{1~exp [204(x, y)]htody

7(x)

=1+Z(g—> del j dys, ... j dy,0(y)o(y,) ... o(y,)

n>1 )’D(x)b TD(y1) ¥D(yn-1)
x(Q,Q> .- Qn)”2 {1—exp [206¢(x, yol}
x {1 —exp [26&(y1, y2)1} - {1—exp [268(pn-1, yi)] (A1.8)

and yp(x) is a path starting from the infinity cop of the sector D and ending at the point x,
for which the following inequality is fulfilled:

7 Cyp(%) 5( )la?(y,)Q"’(y)dyl < 4o, (A1.9)
yD(X
with
Cpu(¥) = max [1—exp [204(y, 2)]1, (AL.10)

¥,2€7D(X)
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where the points y, z are ordered on yp(x) i.e. y lies on the path yp(x) between x and z.
For any such a path the function yp(x) fulfils the following bound:

lp(x)—1] <exp [op(x)]—1 (AL1D)
where

op(x) = liminf[5 C,,(x) | low(»)Q"2dy(] (A1.12)
yo(x) .

and the limit in (A1.12) is taken for all yy’s fulfilling (A1.9).

Let K, denote a set of all the points x fulfilling (A1.9) for some path yp(x). It follows
from (Al1.11) that the series in (Al.8) is uniformly convergent in Kp,.

The solution yp(x) to the Schroedinger equation (Al.1) defined by (Al1.2), (Al1.7)
and (A1.8) can, therefore, be written in the form:

vp(x) = 5" B(x)xp(x), (A1.13)

with
waVEB(x) = -1/4 exp[+o I 0'%dy] (Al1.14)

and yxp(x) given by (Al.8).

The solation yp(x) vanishing at ®©p and having this property is unique in D (up to
a multiplicative constant).

Each particular Stokes graph defines its own set of the solutions to the Schroedinger
equation having the form (Al.13). We shall call such a set a fundamental set and each
solution it contains — a fundamental solution.

The fundamental solution yp(x) defined in the sector D can be continued analytically
to any point of the Stokes graph which is regular for w(x), preserving its form (A1.13).
It increases infinitely when continuing to any other sector of the graph if x — oo in this
sector.

Let us note further that any two fundamental solutions defined in different sectors
of the Stokes graph are linearly independent. This fact is the obvious consequence of their
asymptotic behaviour described above.

On the other hand, any of the fundamental solutions can be expressed as a linear
combination of another two fundamental solutions. The coefficients of such a linear
combination can be calculated directly by analytic continuation of the solutions to the
corresponding sectors of the Stokes graph keeping their form (Al.13). Writing:

Pi(x) = oy it (X) + g j(X) (Al1.15)
we have

Ay = lim [p(x)/p(x)]

x—+ack
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and
Gy = lim [p(x)/p(x)] (A1.16)

x-=a0j

where oo, c0; are the infinity points at the sectors D,, D; respectively.

1t should also be noticed that, due to our assumptions about ¢(x) and Q(x), the for-
mulae (A1.7) and (Al.8) define the solutions which are meromorphic in the x-plane but
are holomorphic in the neighbourhood of the real axis. However, the representations
of the solutions given by (A1.7) and (A1.8) are singular at each turning point (whether
real or complex).

One can meet the following particular choices of Q(x):

L o) = q(x)
2. Q(x) = Quoa i Y,.(x) (Froman and Froman [2, 8])
3. Q(x) = q(x)q(x) ... g,(x)  (Giler [6]) (A1.17)

Note also that Q(x) can be suitably chosen for each singular point of g(x) (2, 8].

Al1.2. The JWKB approximation to the fundamental solutions

Let us now discuss briefly the properties of the fundamental solutions which are most
important for their approximations by the JWKB factors (A1.14). First, as it follows from
(A1.8), if x = cop, then yp(x) = 1 and therefore in such a limit

vo(x) ~ vp (x). } (A1.18)

However, it is seen from (A1.11), (A1.13) and (A1.14) that the approximation (A1.18)
can be useful not only asymptotically when x — oop, but also for finite x, for which the
following condition can be satisfied: :

op(x) < e <k 1. (A1.19)

Each such a point x will be called a JWKB point of the fundamental solution wp(x).
A set of all the JWKB points for the solution yp(x) fulfilling (A1.19) for a given ¢
will be denoted by Kjpo. '

Al.3. Canonical points and canonical domains of the fundamental solutions

The property of the point x to be the JWKB point of the solution yp(x) depends on
its position in the x-plane and is strongly related to its another possible property of being
a canonical point of the solution yp(x) in the following sense [13]:

A point x is a canonical point of the solution yy(x) if a path y(x) exists for which each
ordered pair (y, z) of the points y and z lying on the path (with y between x and z) fulfils:

Refoé(y, 2)] < 0. (A1.20)

A path yp(x) with the property (A1.20) is called a canonical path [13].
It follows from (Al.9) that for the canonical points of yp(x) the coefficient C, (x)
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cannot be greater than 2. Therefore, the condition (A1.19) for the JWKB points can be
reduced to:
o5 (x) = liminf | |w(»)Q'*dyl (e <1 (A1.21)
ypCAN(x)
if these points coincide with the canonical ones.

The canonical points for the solution yp(x) seem to be the most probable candidates
also for its JWKB points (for some ¢ in (A1.21)). On the other hand the condition (A1.19)
can hardly be satisfied by the non-canonical points for which the coefficient C, (x) can
be an arbitrary real number (depending on x and yp(x)).

An identification of the canonical points for each particular fundamental solution
is a relatively simple task. A set K5*™ of all canonical points of the solution yp(x) is called
a caponical domain of yp(x) [13]. A boundary of the canonical domain KS*N consists
of the Stokes lines. Some examples of the canonical domains are considered in Section 3.

The sectors D; and D, i # j, are said to be communicating canonically if D, D
- KCAN CAN £ . )

The followmg ‘canonical’ properties of the fundamental solutions are most important
for our further considerations.

1. The infinity points of the communicating canonically sectors can be connected
by some canonical path. _

2. Let Dy, i = 1, 2, 3, be the. pairwise canonically communicating sectors. It follows
then that for the corresponding solutions yp, i =1, 2,3, the coefficients ap,p .,
Up,p-py --- €€, G, j,k =1,2,3, of the corresponding linear combipation (A1.15)
can be calculated by (A1.16) keeping x running to the infinities oop, cop,, ... €tc. along
the corresponding canonical paths yp(c0,) yp(0,), ... etc. Such a-coefficients we shall
call canonical coefficients. _

3. If Dy and D, ., are not communicating canonical domains then it is always possi-
ble to find a sequence D,, D,, ..., D, of the sectors such that in each of the triads (D,
D,:,Dpi2) p=0,1,...,n—1, the sectors communicate canonically pairwise.

4. It follows, therefore, that in each linear relation (A1.15) its coefficients are either
the canonical coefficients or can be expressed as functions of such coefficients.

The last two properties justify the following two statements expressing the importance
of the fundamental solutions and their canonical domains in applications:

a) to solve any global one-dimensional quantum-mechanical problem (such as calcula-
tions of matrix elements, energy levels, scattering amplitudes etc.) it is sufficient to use the
set of the fundamental solutions; and ‘

b) the corresponding considerations which lead to the solution of the problem can be
performed completely inside the canonical domains that correspond to the fundamental
solutions.

Al4. Capnonical index of a Stokes graph

Let D; and D; be a pair of the communicating canonically sectors and let o,;
= gpr (ooDJ) where gp, (ooDJ) is given by (A1.21) for x = oop,. Let R be a set of all g;;
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calculated for a given Stokes graph. The following quantity shall prove its usefulness for-
our further considerations:

eAN = max g;;. (A1.22)
eijeR

We shall call this quantity a canonical index of a given Stokes graph.

Let I';; be a set of all canonical paths starting at cop, and running to cop,. All the
paths in I';; are homotopically equivalent i.e. there are no the turning points reither the
poles of Q(x) and ¢g(x) between them. Therefore, I';; will denote also an equivalence class
of such paths as well as any representative of the class. Since any canonical path yp,(cop )
can be considered as being an oppositely directed canonical path yp (cop) (i.€. yp(0p )
= —yp(0p)) then I';; = —T};

Each class I';; divides a set T of all turning points of the Stokes graph into two disjoint
parts T;; and T;; Each pair, ;;, 1;; of the turning points with ¢,; € T;; and #; € Tj; will be
said to be canonically well separated if g;;(= ¢;;) fulfils the bound (Al.21) i.e.

Each g;; will be called a canonical index of the corresponding path I';;.

If the condition (A1.23) is satisfied for each member of the set R then the turning.
points of a given Stokes graph will be said to be canonically well separated. Obviously,.
the last condition is equivalent to the following one:

AN < 1. (A1.24).

Al.5. Conditions for applicability of the JWKB approximations

Taking into account the canopical properties of the fundamental solutions described
in the previous point it seems reasonable to limit further copsiderations of the JWKB
points of a given fundamental solutions vy, to a subset K, , of Kb " defined by

K.p = Kg*™ n K]3KB (A1.25)

i.e. to this JWKB points of yp, which are also its canouical points. Each K, y, will be called.
an ereduced canonical domain.
Similarily, a set

D,=DnK,p (A1.26)
will be called an e-reduced sector. ‘

P .
A union S, = U dD,, of the boundaries of all the e-reduced sectors will be called

r=1
an e-reduced Stokes graph (see Fig. 15). It is seen from Fig. 15 that an e-reduced Stokes
graph is obtained from the corresponding Stokes graph by substituting each turning point
by an appropriate ‘hole’.
Analogously, two e-reduced sectors D, ; and D, ;, i # j, will be said to be canonically
communicating if D,;, D,; < K,; n K, ; # .
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Fig. 15. The e-reduced Stokes graph correspdnding to the Stokes graph of Fig. 8 (draWn with broken
lines)

Therefore, to a given Stokes graph S there correspond the sets D,, yp_and K5oY,

r=1,..,p, of the sectors, the fundamental solutions and their canonical domains re-
spectively, and to the related e-reduced Stokes graph S, there corresponds the sets D,,,
vor’® and K,p, r =1, ..., p, of the e-reduced sectors, the JWKB approximations to
fundamental solutions and their e-reduced canonical domains. The following statement
should now be obvious:

A successful application of the JWKB approximation to solve any (global) one-dimensional
quantum mechanical problem requires the canonical properties 1.-4. of the fundamental
solutions (stated in the Section Al.3) to remain valid also when the following substitutions
is performed: S — S,, D, = D,,, wp, = vp, <> and K5*" > K,,, r =1, ..., p, for some
& <1 '

If an application of the JWKB approximation such as described in the above state-
‘ment is possible then the Stokes graph corresponding to the case will be called a JWKB
approximation allowing graph.

Let us note further that if a given Stokes graph is the JWKB approximation allowing
graph for some ¢ < 1 then ¢ is in fact flxed and equal to the canonical index of the graph.

This last conclusion follows from an observation that by lowering ¢ in (Al1.21) we
shall obtain such a value for which the canonical communication between some of the
canonical domains is broken. This can happen, of course, if ¢ becomes smaller than the
canonical index of the considered Stokes graph.

The following condition is, therefore, necessary and sufficient for the Stokes graph S
to be the JWKB approximation allowing graph:

The turning points of the Stokes graph S are canonically well separated.

Therefore, the canonical index of the Stokes graph S becomes its basic characteristic
which allows to decide whether it is possible or not to make the JWKB approximations
to the fundamental solutions globally i.e. in the whole area of the corresponding e-reduced
Stokes graph S,.
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"1t follows further that when considering a class of the JWKB approximation allowing
graphs we should put everywhere & = AN,
In this way, the canonical index becomes also a basic unit for measuring relevant
accuraces with which the JWKB approximations are used in corresponding calculations.
However, the following comment is in order here. It can happen, of course, that a giv-
en Stokes’ graph is not the JWKB approximation allowing graph. It does not mean,
however, that none of the JWKB approximations is then possible to solve any underlying
quantum mechanical problem. It means merely that only some particular problems (such
as, for example, the energy eigenvalue problem) can be solved in such a case using the
JWKB approximations. These are problems which require for their solution only some
subsets of the fundamental set and for each such a subset the considered Stokes graph
behaves as a JWKB approximation allowing graph.

Al.6. Derivatives of the fundamental solutions and their JWKB approxi-
mations

The considerations in Section Al.5 need only slight changes if derivatives of the
fundamental solutions are also to be taken into account. One can proceed in the following
way. .
Let y’(x) be the nith derivative of the fundamental solution yp(x). Writing:

Px) = 93" (1A% (A1.27)
and
; (w’w""(x))‘"’ = o, (X)pp" (%) (A1.28)
we get for yp.(x):
XD,n(x) = Z( ) (k)(x)dn K(x), (A1.29)
k=0

where yp(x) is given by (Al.8). It follows from (Al.8) that the kth derivative of yp(x)
can be written as:
1) = ay+bp()+od, | @@ ypdy, | (A1.30)
7D(X)
where the coefficients o, a;, b, and d, are functions of ¢ and Q and their derivatives (more
detailed forms of these coefficients will be given below). Therefore Xp:n Can be given the
following form:

Xo,.(X) = A(x)+ Bi(x)xp(x) +0D(x) J; ) 0Q*ypdy, (AL31D)
7D(X
with
Ay(x) = Z (:) a(X)oty —1(X) ' (A1.32)
k=0

and with similar expressions for B, and D, built with b, and d, respectively.
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Using now the properties of the solutions (Al.8) one can obtain the following bound
for xp.(x):

1) — Ca(x)] < (IBy(3)| +1D,(x)]) (exp [ep()]—1). (A1.33)

where C,(x) = A,(X)+B,(x) and gp(x) is defined by (A1.12). The bound (A1.33) is, of
course, a generalization of (Al.11).

It is now natural to limit our further considerations to the §“AM-reduced canonical
domains K$9. It should be obvious that the functions B,(x), C,(x) and D,(x) are holomor-
pth in KS&N. Let {x;: C,(x) = 0, x;€ K5} be a set of zeros of C,(x) which lie inside
K& and let ¥, be some finite vincinity of x;. It can be shown, under the assumptions
we have made about the functions Q and ¢, that the function:

M,(x) = (IB,(x)|+ D (x)D/|Ci(x)] (AL34)

is bounded in KSOM\ UV, (UV; is a union of all ¥;). Let M, , be this bound. Obviously,
the sum N,(x) = |B,(x)|+ |D,(x)! is also bounded in UV, with a bound N, p. The vincini-
ties ¥; are assumed to be chosen in a way ensuring a minimalization of M,y and N, y,.
Therefore, the function C,(x) can be a good approximation to yp, ,(x) for x € K$p'" if the
following bound is satisfied:

£AN <1, (A1.35)

where e-4" is maximal of the numbers e, M, pe“N, N, pe™N.
A number eSAN being maximal of the numbers ef‘},’f, i=1,..,p,k=0,1,..n,
will be called an nth canonical index of a given Stokes graph. Of course, £g*N = 4N,
Let KSp™ be a set obtained from KSa" by the substitution eAN — eS4N, It follows
then from the above considerations that we get the following formula for the JWKB

approximation to y{(x) in KSp™:
vV = G RG), for M <1 k=0,1,.,m  (AL36)

One can now perform constructions analogous to those of Section Al.5i.e. the con-
structions of &S*M-reduced canonical domains D?,, r =1, ...,p and the &-*M-reduced
Stokes graph S;. In particular, the statement in Section Al.4 about the successful appli-
cations of the JWKB approximation modifies, in the presence of derivatives in the quan-
tity (2.1) of Section 2, as follows:

A successful application of the JWKB approximation to solve any (global) one-dimensional

quantum-mechanical problem requires the canonical properties 1—4. of the fundamental

solutions (stated in the Section A2.3) to remain valid also when the following substitutions

is performed S— 8", D, D, v = Cypr*%, KS4r » KSV ™ k=0,1,...,n,r=1,
., D, with €4V < 1. :

The Stokes graph allowing such a JWKB approximation will be called as previously
a JWKB approximation allowing graph.



707

For the sake of completeness let us writé.down also the following recurrent defini-
tions of the coefficients o, @, b, and d, in (A1.18) and (A1.30):

O = Og_ g+ oy, k=2,..

with

1

o(x) =1, and ox) = —%% +00Q'2, (A1.37)

and

(4, = a1 +260"b, _,,

b, = bj_, —200"?b,_, +0Q"*wd, _,,

dy =dy_1—00"b,_,, k=1,2,..,

with

(% = do =0 and by, = 1. - (A1.38)

The function w in (A1.38) is given by (Al.6).
As it follows from (Al1.32), (A1.37) and (A1.38) a general structure of C, in (A1.33)
is the following:

CCX) = C () +6QY3C o (x) k=01, ... (A1.39)
where C, ;, i = 1,2, are o-independent rational functions of Q and ¢ and their deriva-
tives.

APPENDIX 2

We estimate here the accuracy of the approximate formula (3.10). For simplicity
we shall do it for the case when V, = V,, E; = E, and M(x, d/dx) = M(x).

It can be easily shown that the quantization condition for the energy E, in Fig. 1
takes the form:

ICy,LX1,L»u = €XP [+’W1 (b1)]C1 RX1,R~U> (A2.1)
with ¥4 x-u = 21,x(©y), X = L, R, and with the coefficient o, in (3.8) given by:

L = X1,L—>D/X1,U-»D- 7 (A2.2)

Substituting the corresponding fundamental solutions into (3.8) and integrating the
resulting series term by term we get:

!{'IHM(X)‘Pldx = C{ .!: +(X(1}1)1;»D Xgll).—»n X1 R—»U)I
+ (@ Rop+ 1 -p+ 182 -p) I

+ ] Givt wD+ | G+
2
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~( v+ xSl u+aR-p) §
K

~ (v su+ 28l -p) j
- f O+ _f O+ 18301 2 M(x)dx + higher order terms, (A2.3)

where 1), X =L,R,U,D, k= 1,2, are the first terms in the series (Al.8) and
= i(Cy 1)*(1,u-pX1,r-uX1,r-p)~" and the contour I is shown in Fig. 2.
Noticing now that x{3(x)+ 220 = #{ibors kLI +xRE) = 200, - etc. and
putting (y;1-p)t = 1=x{{.p+ ...; etc. we get from (A2.3):

j(lpl)zM(x)dx = i(cl,L)2(1‘+X(11,I).—»D
K
— 2+ 1) j Q7 Y2M(x)dx +higher order terms. (A2.4)

Noticing further that
(2 op =2+ ail vl = 15 | 0,(x)Q1?dx| <5 eN, (A25)
Iy

where the contour I'; is shown in Fig. 2, we see that ¢AN

the accuracy of the approximation (3.10).

provides the proper measure of

APPENDIX 3

We estimate here the left-hand side of (A1.19) for yg ;- and show that it cannot
be fulfilled by any ¢ < 1. To do this let us consider the integral (see Fig. 12):

x++3 . ’
I, = | o(x)Q"dx, (A3.1)
X4+ =0
where w(x) is defined by the superpotential U(x) = x(x2—a?) with the help of (Al.6)
(where Q(x) = g(x) = [(U’)>—hU"" —2E,]/h?). Noticing that in the vincinity of the point
xp = —of</3 we can write ¢ = 9(x—c)(x—)(x—a)(x—b)/h? x I(xs—x)[(x—x1)*
+62)/h? we get for I;:

Iy (WA [2 _}l’ A+x*)""2dx-5 jl x2(1+x%)"2dx]/[(x , —x_)6*]

= —[7 ﬁ-sm (1++/2)]/4 = ~18. (A3.2)

It follows from (A3.2) that the condition (A1.19) cannot be fulfilled for x — ooy i.e.

that we cannot put yh iy = L.
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