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Two regularizations of the Nambu-Jona-Lasinio model with vector
mesons are compared: the proper-time method which preserves the gauge
invariance of the quark loop term and a 4-momentum cutoff method which
breaks gauge invariance. When meson masses are substituted for the
coupling constants, the action has only a logarithmic dependence on the
cutoff, and the two methods yield similar results. The binding of gq
excitations is discussed as well as the importance of calculating on-shell
meson masses rather than using a gradient expansion of the action: The
vector mesons are expected to reduce significantly the modification of
a nucleon in nuclear matter. A consistent way to compare the model
predictions with experiment is proposed.

PACS numbers: 12.90.+b

1. Introduction

A low energy effective theory should yield observables which do not
depend too much on the way high momenta are treated. At first sight, this
does not appear to be the case when vector meson degrees of freedom are
introduced into the Nambu-Jona-Lasinio model of hadronic matter. In this
model, the vector fields are minimally coupled to quarks thereby making the
quark loop gauge invariant. So far all the applications of this model have
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used gauge invariant regularization of the fermion determinant [9, 25, 26]
such as, for example, the proper-time regularization of Schwinger [27].

When a gauge invariant regularization is used, the fermion determinant
has only a logarithmic dependence on the cutoff. In other regularizations it
develops a quadratic dependence.

Thus, if the model really required a gauge invariant regularization of
the fermion determinant and if it would yield different results when, say, the
momenta are sharply cut off at some value, it would be a model in which
the high momenta play a crucial role in the dynamics. This contradicts our
intuition of what a low energy effective theory should do. Qur purpose is to
show that the Nambu-Jona-Lasinio model does not require gauge invariant
regularization and that it can be formulated in a way which does not depend
critically on how the high momenta are cut off. The observed vector mesons
are massive and only the a, and f; acquire mass by a Higgs mechanism. The
¢ and the w do not. Phenomenology therefore does not compel us to use
gauge invariant effective actions.

Before showing this explicitly it may be useful to state to this mixed
audience what our aim is when we use such a model. As the French saying
goes, la plus belle fille du monde ne peut pas donner plus qu’elle a. Let us
explain what we are not attempting to do. We are obviously not attempting
to formulate a theory of strongly interacting particles. We only calculate the
mesons in order to fix the parameters of the model and to make sure that we
have a correct description not only of the vacuum but also of its elementary
excitation modes. We also calculate the baryons because we want to know
how they get modified in dense baryonic matter. Indeed, we use the model
with the aim of calculating hadronic matter in extreme conditions of high
density or temperature and to investigate chiral symmetry restoration and
the possible formation of exotic phases [1-6] at high density. So far lattice
calculations have not helped much in this search. They have not been able
so far to deal with dense matter. They indicate a phase transition at high
temperature but, oddly, more effort appears to be spent on determining the
(first or second) order of the phase transition than the nature of the other
phase.

We are also not doing QCD. The latter may need a word of explana-
tion. All too many papers begin with statements such as ”we believe that
QCD is the fundamental theory of strong interactions”. The paper then
usually goes on with its bag, constituent quark or whatever model and glu-
ons are only introduced towards the end in order to account for whatever
corrections are still needed. The insistence on the QCD relevance of low
energy Lagrangians has probably done more harm than good. All too often
a seemingly elaborate theory is formulated to express nothing more than a
possibly modified form of gluon exchange. This is not to say that one should
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not attempt to make the link between QCD and low energy hadronic phe-
nomena but one should not force the issue and claim urb: et orbi that one
is doing QCD when, in fact, we simply do not know what the nature of the
QCD ground state is.

It is as if we knew that metals are conductors but did not know the
underlying crystalline structure of the solid. In such a situation, to invoke
QED and to insist that the electrons in the metal interact with a possibly
modified photon exchange would be misleading. Indeed the properties of
the metal are dominated by the electron-phonon interaction which is due to
the crystalline structure of the solid.

Ideas are needed, not statements. Several ideas have been put for-
ward. Diakonov and Petrov [7] have suggested that the QCD vacuum is
an instanton liquid. This has, so far, neither been verified nor disproved.
Witten [8] has suggested that Skyrmion physics may be justified by the
1/N. expansion. But he, nor anyone else, has never come close to deriving
a Skyrme Lagrangian from QCD. Other models, such as the Nambu-Jona-
Lasinio model, have no trouble in reproducing the correct N, behavior of
observables. Color dielectric models [11] have features taken from lattice
QCD calculations. But whether they are relevant to low energy phenom-
ena such as spontaneous chiral symmetry breaking is not known. Effective
Lagrangians have also been derived by guessing that the two-point function
dominates the dynamics [9, 10]. This leads to one-gluon exchange between
quarks with a modified gluon propagator and it is not confirmed by exper-
iment.

2. The Nambu—-Jona-Lasinio action

The essential assumption of the Nambu-Jona-Lasinio model is that the
low energy properties of the vacuum and of hadrons are governed by quark
dynamics. (That quark dynamics determine the structure of hadrons is
amply demonstrated by the successful spectroscopy of constituent quark
models [12].) Dirac sea quarks cause the spontaneous breakdown, of chiral
symmetry in the physical vacaum as Nambu-Jona-Lasinio showed in their
original paper [13]. The model attempts to reconcile chiral symmetry and
constituent quark models.

When vector mesons are present, the Lagrangian can be written in the

form: )
£ =9(-id) - 5= (L)’ - @rans)’)

55 (L) + @Lame)’) - (2:1)
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We are using a Euclidean metric in which z, = 2* = (7,7) and 7, = v*

= (i8,7) and we assume SU(2) quark flavors with I'; = (1,7). The La-
grangian (2.1) is equivalent to the form:

L=9(-i0+ 8 +iPys+V + Ays)y

a® 2y, 0 2
+5 (S2+ P+ 5 (Vi + 4L) (2:2)

which is written in terms of 8 scalar and pseudoscalar fields S, and P, and
8 vector and axial fields V, and 4, :

S§S=8.T4s ,P=PJl, ,V,=V, s A, = Apl,. (2.3)

By integrating out the quark degrees of freedom we obtain an effective action
in the form:

I=-Trn(-i0+ S+ iPys + V + A7ys)
a, ., a0, 2
-*-_/d4z _Z'(SG+P¢)+'§’(V,,,,+A,,¢) : (24)

The coupling of the fields S, P,V and A to the quarks allows us to
determine their quantum numbers and to associate them to the observed
mesons. The scalar and pseudoscalar fields are thus:

Charge
Field |Couples |Isospin| G-parity |Spin|Parity| conj. |I¢ (JPC)| Meson
to I |G=ée"C| J p C
s | vy 0 + 0| + + |0t (0ott) o
S | ¥7Y 1 - 0| + + |17 (@) ez b
983 MeV
PO | 9wy | O + 0| — | + [ot(0 )| =
548.8 MeV
957.5 MeV
P |ywsfyp| 1 - 0| - + {17(0°%) 7
138 MeV
(2.5a)

The vector fields are:
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Charge
Field| Couples |Isospin| G-parity |Spin|Parity| conj. I¢ (JPC)| Meson
to I |G=é*c| J | P C
V2| dru¥ 0 - 1] - - |07 (077)] w
783 MeV
Vo |$rmuip| 1 + 1| - | - [1ra)|
770 MeV
AS | Yrursv | O + 1 + + |0*(1*)| fiezD
1283 MeV
.lf,, YrarsTY| 1 — 1 + + |17 (1*%)]| @y ez 4y
1260 MeV
(2.5b)

The field P, cannot be properly identified with the observed n mesons
unless strange quarks are included. It is only listed for completeness. Fur-
thermore, the pion turns out to be a mixture of the P and A‘“ fields.

For the sake of simplicity, we assume exact chiral symmetry (neglecting
the pion mass) as well as Us(1) symmetry (neglecting the U(1) anomaly).
We also assume the O(4) symmetry of the vector fields {14] which makes
the (w, ¢) and the (a;,f;) degenerate.

The action (2.4) can be regularized by introducing a cutoff A of the
4-momenta, thereby defining the trace in the quark loop term to be:

~TrinD = - tr(k|In D|k), (2.6)
k<A
where D = —i0 + S + iPys + V + Ays is the Dirac operator -and where
tr is the trace over the discrete Dirac, flavor and color variables. Such a
regularization breaks the gauge invariance of the quark loop term.
In the popular proper-time regularization, the real part (1/2)Tr DD
of the quark loop term is regularized introducing a cutoff A in the proper-
time integral, there by defining the trace in the quark-loop term to be:

—%Tr mDiD = %’1\: / %{exp{—sDTD]. (2.7)
1/43

This form preserves the gauge invariance of the quark loop term, whereas
the form (2.6) with a sharp 4-momentum cutoff does not. The two regular-
izations will be compared in detail below.
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The Lagrangian (2.1) represents, hopefully, a first approximation to
quark dynamics in the QCD vacuum. When quarks propagate in the phys-
ical vacuum, whatever its structure is, they interact and the Nambu-Jona-
Lasinio model assumes faute de mieuz, a point interaction. Instead of view-
ing the Lagrangian (2.1) as low energy QCD, it may be more useful to view
it in the same way as the Landau theory of Fermi liquids, in which an effec-
tive zero range interaction between particles is also assumed and in which
the coupling constants are fitted to experiment. We will fit the 3 parameters
of the Lagrangian to the pion decay constant and to the meson masses. The
Lagrangian has remarkably few parameters and we shall see that the model
has the appealing feature of clearly displaying its own limitations. They
are due to its lack of confinement. Mesons and baryons, for example, will
appear as bound (but not confined) qq or qqq states but not all such states
turn up to be bound.

3. Meson propagators

The action (2.4) has the stationary point:
S0 = M, §:0, Pa.:()) Vya:OaApa:O$ (3'1)

which is translationally invariant and which can represent the physical vacu-
um. In this vacuum only the (o meson) field S, acquires a non-vanishing
value M,, a mass which we can determine from the condition that the action
is stationary at that point. This is expressed by the so-called gap equation:

2v 1
2 4
a® = _._.(27‘_)4 /d kk’ R (3.2)

where v is the spin-flavor-color degeneracy of the quark orbits. When u and
d quarks are included, » = 12. In the physical vacuum, the quarks acquire
a mass M, which we call the constituent quark mass.

The gap equation can be used to eliminate the constant a? in favor of
the constituent quark mass M,. By subtracting its value at the stationary
point (3.1), the action (2.4) can be written in the form:

1

I=- —_
I&m(1+_ia+Mo(

S+iPys+V + A’)’s))

1 1

- b?
+ 2 2 g2 v 2 2
+2Tr—_—i63 T (S3+ P> -MH+ 5 /d“z (Vo + 4, (3.3)
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where we defiried:
S=85+My, §=5,+5-7. (3.4)

If we assume that the mesons are low amplitude qq excitations of the
vacuum, the meson propagators can be calculated by expanding the action
to second order in the fluctuating parts of the fields around the stationary
point [15, 16, 17]. The calculation is somewhat tedious but straightforward.
It is found that the scalar fields give contributions of the form:

I= 2(2 ) ] d'q $(9)9(-0)2(9)(¢" + m*(9)), (3.5)

where ¢ stands for the scalar or pseudo-scalar fields S or P and where:
d(q) = /d‘z e g(z). (3.6)

The functions z(g) and m(q) are given below in Table (3.10a).
The propagator of the field ¢ is diagonal in momentum space. It is

equal to:
1

2(g)(¢? + m?(q))’

and m(q) is the meson mass operator or self-energy [15].
The vector fields give contributions of the form:

K(q) =

(3.7)

= 2—‘(22)4 / d*q V(@)Va(-9)2(9) (840d’ ~ 9u9a) + 6,am®(q))

= ““"‘2(21,)4 / d*q 2(q)(3 Fua(@)Fua(—q) + m*(Q)Vu(@)Vu(—9)),  (3.8)

where V stands for the vector or axial fields V or A and F,, = (0,Va)
— (8aV,). The propagators K, (g) of the vector fields are diagonal in mo-
mentum space and equal to:

_ 1 949
Kueld) = i@ v mi ) (6'“’ ¥ m=(q>) (3.9)

so that m(gq) in (3.9) is the vector meson mass operator or self-energy.

As in most models involving chiral and vector fields, the action mixes
the P, and A,, fields. The pion field turns out to be a linear combination
of the two. It is made explicit in Ref.[17].
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The meson mass operators m(q) and the field strength renormalization
constants z(g) are given in the table below:

Meson | Field 2(q) m?(q)

o S vf(g) M5

do § vf(g) 4Mg (3.10a)

ol Po | vi@GT ,,;2(;; :1;(1303,, 0) 0

% P| vf@gT u;j(; l:rq;(qlll)é‘uf(q) 0

Meson | Field | z(q) m?(q)
w 124 vS(q) %ﬁ
P A vS(q) %Iﬁ (3.10b)
ho| B | s | DO M)
i B, | vS(q) s VT(?,)SL;MM@)

More complete tables are listed in Refs [16, 17]. The functions f(q),
S(q) and T(q) are given in the Appendix.

The function T'(q) appearing in the vector meson mass operators is a
gauge breaking contribution of the quark loop which is due to the gauge
breaking regularization. Alone, it would yield a mass term (of the wrong
sign) even in the absence of the explicit mass term proportional to b2. When
a gauge invariant proper-time regularization is used, the function T'(g) van-
ishes. With a sharp 4-momentum cutoff, it acquires the form (A3) given in
the Appendix. It is negative and weakly (less than 10%) dependent on ¢ in
the allowed range of ¢ values.

Tables (3.10) show that T(g) can always be grouped together with the
constant b? of the Lagrangian. This way, the gauge breaking terms of the
quark loop can be lumped together with the explicit gauge breaking mass
terms of the Lagrangian. The function T(g) depends quadratically on the
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cutoff. However, when 5% + T(q) at ¢* = —m} is fitted to the ¢ meson
mass m, as in Eq.(4.5) for example, the action becomes only logarithmi-
cally dependent on the cutoff. Thus we can replace the 4-fermion coupling
constants 1/a? and 1/b? of the Lagrangian®(2.1), respectively, by the o and
¢ masses. The action is then only logarithmically dependent of the cutoff.

4. The pion decay constant and the constituent quark mass

The axial current j3(z) is the Noether current associated to a chiral
rotation in which the fields undergo the following transformation:

— —

§°=5S8°-a.-P, P=P+as°,
§=§-ap°, P°=P°+a.§,
V=V, AS=4%, V.=V, +dxA4,,
A, = A, +dxV, +13,8). (4.1)
Substituting into the action (3.3), we obtain the axial current:

.a _ o1
3a(®) = 5(6,a(z))

b2 + vT(q)
b +vT(q) + 4M3vf(q)’

- s DR (42

where only the linear terms in the pion field are retained. The matrix
element of the axial current between the vacuum and a one-pion state nor-
malized in a volume {? is:

e vf(0)M, b + vT(0)
w7 VZ, b +vT(0) +4MIvf(0)

(0l75(2)1g, a) = —ig,

ei qz

= -—2q“7—_2—“r‘b“fw b

where f, is the pion decay constant, measured to be f, = 93 MeV and where
Z, = z(q = 0) can be read off Table (3.10a). Since we have zero mass pions,
the pion decay constant turns out to be:

(4.3)

_ b? + vT(0)
fr = Movvf (0)\/ b*uT(0) + 4M2vf(0) (4.4)
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Fig. 1. The relation between the constituent quark mass M, and the cutoff A
obtained by fitting the pion decay constant (fr = 93 MeV) and the ¢ mass (m,
= 770 MeV). The calculation was made using a sharp 4-momentum cutoff. The two
curves show the results obtained with and without vector mesons. When vector
mesons are not included, only fy is fitted.

3
GeV| Mo

A o Proper time cut - off

05
L . Sharp 4 - momentum
L cut-off

o L | | ! LA
0 0.5 10 15 20 Gev

Fig. 2. The relation between the constituent quark mass Mo and the cutoff 4
obtained with proper time and 4-momentum cutoff regularizations.

As shown in the next Section, the g-meson mass is given by the expression:
3 b +vT(¢* = —m3) .

¢ v8(¢? = —mi)
We can solve Eq. (4.5) for b* and substitute its value into Eq. (4.4).
When the experimental values f, = 93 MeV and m, = 770 MeV are used,

the expression (4.4) becomes a relation between the cutoff A (used to eval-
uate the functions f, S and T') and the constituent quark mass M,. This

(4.5)
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relation is depicted in Fig. 1. We see that vector mesons completely mod-
ify the relation between A and M,. This is why the model predicts very
different results when vector mesons are included. The effect is due to the
mixing of the A, and (8, P,) fields. Fig. 2 compares the relations between
A and M, obtained with proper -time and 4-momentum cutoff regulariza-
tions. To obtain a constituent quark mass M, = 0.5 GeV for example, a
10 % larger cutoff is required with the 4-momentum regularization. This
can be understood by the fact that the proper time regularization cuts off
momenta larger than A in a smooth way so that it includes some higher
momenta.

5. Bound and unbound §q excitations. Critique of Skyrme-like
local Lagrangians

On-shell mesons are poles of the propagators (3.7) and (3.9). They
occur for negative values of ¢g* which are the solutions of the equation:

¢ +m?(g)=0. (5.1)

The squared mass operators m?(g) are listed in Tables (3.10). The mass of
an on-shell meson is m(g) where ¢ is a solution of (5.1).

DIRAC | ——sd
SEA | ——f

k= A

Fig. 3. The physical vacuum is a Dirac sea composed of quarks filling the negative
energy plane wave states with momentum k < A. The positive energy excited
states are empty. Free qq excitations of the vacuum occur at energies greater than
the mass gap 2M,.
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In the Nambu-Jona-Lasinio model, the vacuum is a Dirac sea made up
of quarks which have mass M, (Fig. 3). If, for a given meson, Eq.(5.1) has a
solution such that —g? > 4 M7 then the meson will have a mass larger than
2M, and it can decay into free Gq excitations shown in Fig. 3. The pole of
the propagator represents then an unbound §q excitation and not a meson
particle. Table (3.10a) shows that the ¢ meson has an on-shell mass exactly
equal to 2M, so that it occurs just at the gq threshold. Table (3.10b) shows
that:

m3 (q) = m3(q) + 4M:§% . (5.2)

The expressions in the Appendix show that f(¢) > §(g) so that:
m? > 4M?. (5.3)

Thus, in the model described by the action (2.4), it is not possible to form a
bound Gq excitation with the quantum numbers of the a; meson. The same
holds for the f;.

Fig. 4 shows the p and a, mass operators plotted against —g?. The
curves cannot be continued to the region where —g? > 4M? becduse the
mesons become then unbound. Although no bound state is obtained for
a;, we see that it is alinost bound. It is tempting to extrapolate (dotted
line) the a; mass operator to the point where it intersects the —¢? line and
where Eq.(5.1) would be satisfied. We see that for a constituent quark mass
My = 0.55 GeV the a, meson is almost bound at its observed mass of 1260
MeV.

The lack of a bound states for the a, is due to the lack of confinement
of the Nambu-Jona-Lasinio model. Free quarks of finite mass M, do not
exist, of course, no more than free gq excitations of mass 2M,. The model
is clearly showing its limitations. Whether the model will be successful in
binding baryons is not yet known.

When gradient expansions are used to generate Skyrme-like effective
actions, only off-shell ¢ = 0 meson masses are obtained. Figure 4 shows
that this would overestimate the squared g and a; masses by 40-50 %.

This is yet another example of the inadequacy of gradient expansions
applied to low-energy hadronic physics. Such was the impact of Skyrmion
physics during the past decade that even the Nambu-Jona-Lasinio model
was often used to generate local meson Lagrangians using gradient expan-
sions. The effective Lagrangians obtained this way were compared to the
Skyrme Lagrangian and observables such as meson masses and decay rates
were calculated from them. This way of proceeding kills one of the main
virtues of the Nambu—Jona-Lasinio model, namely its ability to treat cor-
rectly quark dynamics. Furthermore, gradient expansions become ambigu-
ous when'axial-vector mesons mix with gradients of the pion field. When
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]
Gev? M, = 0.55 GeV
0
- m3, (q)
20
mza‘(exp)
- -a3
10 mé(q)
m%(exp)
-q2
0 i | 1 9
0 05 10 4M2 15 Gev?

0

Fig. 4. The a; and ¢ mass operators are plotted against —g?. The point at which
they cross the —g? line gives the poles (5.1) corresponding to on-shell mesons.
The curves stop when —g? > 4MJ beyond which the mesons become unbound.
The dotted line is a qualitative extrapolation of the a; mass operator. Horizontal
dashed lines are drawn at the position of the observed a; and ¢ meson masses. The
calculation was performed with a sharp 4-momentum cutoff.

an effective local meson Lagrangian is derived from a quark Lagrangian one
tends to forget the finite constituent quark mass M, which can cause cer-
tain hadrons to be unbound. Local effective meson Lagrangians need to
be corrected by Wess—Zumino terms which mimic the quark dynamics in
an unnecessarily complicated way. The spin and statistics of solitons are
obvious when quark degrees of freedom are taken explicitly into account.

Quark models are richer, not in their mathematical properties, but in
the physics they describe. Low energy hadron dynamics is probably not
the most useful place to apply the rich topological properties of Skyrme-like
actions.

6. Partial chiral symmetry restoration in dense baryonic matter

For a translationally invariant system, the energy per unit volume is
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given by the expression:

E I

78 (6.1)
where I is the Euclidean action, 2 the volume of the system and 8 the
(imaginary) time interval: [ d*z = 302. Let us use the action (3.3) to study
the energy as a function of the scalar field §; = M, keeping the other fields
zero.

When the action (3.3) is regularized with a sharp 4-momentum cutoff

A, the energy per unit volume of the vacuum (or the Dirac sea) is found to
be:

ED(OM)) _ (12':;4 f”dy (m (%) + (M- Mg)'yTlATg) . (6.2)

When the proper-time regularization is used, the energy per unit volume is:

&3 [ —aM? _ _—aM} 2 _ 2\ ,—sM]
T = o (e M 1 o(M? - MD)e™ ) . (6.3)

In the expressions above, we have assumed that all fields except the scalar
field S; = M are zero.

Figure 5 compares expressions (6.2) and (6.3) for a typical constituent
quark mass M, = 0.5 GeV. The corresponding cutoffs can be read off Fig. 2.
Much to our satisfaction, the two curves are very similar, thus illustrating
our contention that observables which depend only logarithmically on the
cutoff do not depend significantly on the method used to cutoff the high
momenta.

The vacuum energy per unit volume is a very sensitive function of the
constituent quark mass M. It is roughly proportional to Mg. This is illus-
trated in Fig. 6. As the constituent quark mass M, increases, the chirally
broken phase of the vacuum becomes more rigid: it costs more and more
energy to deviate from the vacuum value M =.M,. For example, the en-
ergy per unit volume of the chirally restored phase (M = 0), which is the
MIT bag constant, increases from 200 MeV /fm® to 500 MeV /fm® when the
constituent quark mass M, increases from 0.4 GeV to 0.5 GeV.

The rigidity of the chirally broken phase is an important parameter
which determines the modification of the nucleon immersed in baryonic
matter. We can represent baryonic matter by. a Fermi sea of nucleons,
filling positive energy plane wave states with momenta k < kp [6], where,
at normal density, kr = 1.36 fm~! = 0.268 GeV. The contribution of the
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M, = 0.5 GeV

e 4 - momentum sharp cut -off k<A
———— proper time regularisation s=1/A2
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Fig. 5. The Dirac sea energy per unit volume is plotted against the scalar field
strength So = My. The full line is obtained with a sharp 4-momentum cut off and

the dashed line with a proper time regularization.

Fermi sea nucleons to the energy per unit volume is:

kr
e _ v,y / k3dk+/k? + g2 M? (6.4)
N (2r)3 J
where vy = 4 is the spin—isospin degeneracy of the nucleons. The nucleons
have a structure so that they couple to the scalar field with a coupling
constant g. In the vacuum where the scalar field M acquires the equilibrium
value My, the nucleons acquire their observed mass My = 989 MeV so that
the coupling constant is given by ¢ = My /M,. Using this value the Fermi
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Mev
fm3
500

0.853
0.943
0.972

400

Mo = 0.6 GeV

300 —

200

100

M/Mo

Fig. 6. The vacuum (Dirac sea) energy per unit volume is plotted against the ratio
M /M, for constituent quark masses My = 0.4 — —0.6 GeV. The dashed line gives
the contribution (6.5) of Fermi sea nucleons (see Fig. 7). The insert gives the values
of M/My at which the Dirac + Fermi sea energy is minimum. These values are
further indicated on the abscissa by little arrows. The calculation was done with a
sharp 4-momentum cutoff.

sea energy (6.4) becomes:

kr

&_ VN 2 2 ]‘l2

= s /k dk [k + My (6.5)
0

In several applications [4] nuclear matter is represented by a Fermi sea
of quarks rather than of nucleons. A Fermi sea of quarks gives the following
contribution to the energy per volume:

EF (2 7 / k*dkvE: + M (6.6)
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Mev}Ee FERMI SEA ENERGY PER UNIT
fm3 | Q VOLUME (all fields except S, are zero)
500~ Quarks in
Fermi sea Mo= 0.7 GeV
L _ Nucleons in
Fermi sea

400 —

Mo = 0.4 Gev

300 —
Mo= 0.3 GeV

200 Mo= 0.25 GeV

100

0 | | [ MM

0 0.5 10 15

Fig. 7. The Fermi sea contribution to the energy per unit volume. The full curves
are the quark Fermi sea contributions for various constituent quark masses. The
dashed curve gives the nucleon Fermi sea contribution.

where v = 12 is the quark spin, flavor, color degeneracy.

The nucleon and quark Fermi sea contributions (6.5) and (6.6) are com-
pared in Fig. 7. When the constituent quark mass is about 0.4 GeV, the
quark and nucleon contributions are represented by approximately paral-
lel curves and they produce, therefore, similar shift of M/M, at a given
baryonic density.

A Fermi sea composed of plane wave states couples only to the scalar
field S = M and to the 4 = 0 component -of the vector field V; ,—0
= &. In nuclear matter at normal density the fields differ little from their
vacuum values and the changes in M or & produced by the Fermi sea are
independent. The change in the scalar field M is obtained by minimizing
the total (Dirac + Fermi) sea energies. This is illustrated in Fig. 8. An
approximately 5 % reduction of the ratio M /M is obtained for a constituent
quark mass M, = 0.5 GeV. The insert in Fig. 6 gives the values of the ratio
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Mev
fm3 Mo = 0.5GeV
200
150 e =" T
NUCLEONS in
FERMI SEA
100 -
50 -~
DIRAC SEA
QUARKS
\J\
0 L
09 foss 10 105 M/Mg

Fig. 8. This is a blow up of a part of Fig. 6 in the region close to the energy
minimum. The bottom curve gives the Dirac sea contribution to the energy per
unit volume. The dashed curve gives the contribution of nucleons in the Fermi sea.
The upper curve is the sum of the Dirac+Fermi sea contributions. Its minimum is
shifted by 5.6 little arrow. The calculation is made with a constituent quark mass
My = 0.5 GeV and a sharp 4-momentum cutoff.

M /M, for different constituent quark inasses.

The presence of vector mesons significantly reduces the shift in M/M,.
This is because they stiffen the chirally broken phase as illustrated in Fig. 9.
The Table below gives the values of M /M, obtained at normal density for
various constituent quark masses and it compares the values obtained with
nucleons and quarks in the Fermi sea:

My chiral field |chiral 4 vector| chiral field |chiral + vector
only fields only fields
(nucleons) (nucleons) (quarks) (quarks) 6.7
0.4 0.734 0.853 0.701 0.831 ( )
0.5 0.850 0.943 0.768 0.912
0.6 0.900 0.972 0.810 0.947
0.8 0.945 0.991 0.860 0.976

Table (6.7) shows how much vector mesons reduce the shift of M [ M.
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The shifts are still strongly dependent on M,. At low values such as 0.4
GeV the p and w mesons are barely bound so that higher values of the
order of 0.5-0.6 GeV may be preferred. At such values M/M, is shifted
by about 5 % which is close to a recent estimate [18] but smaller than the
value reported last summer in Sao Paolo [19] where vector mesons were not
included. In either case we are very far from the value M/M, = 0.6 required
by Walecka’s model of nuclear matter saturation [20].

GevlEp
fm3 ) Q M,z 0.5 GeV
500 —

CHIRAL »
~~ vector field

Loo

300

200

100

Fig. 9. The vacuum energy per unit volume calculated with and without vector
mesons. The shift in the ratio M /M, produced by nucleons in the Fermi sea
(dashed line) is reduced from 0.85 to 0.94 when vector mesons are presented. The
calculation was made with a sharp 4-momentum cutoff.

The shift in M/M, produced by the presence of baryons in the Fermi
sea can be related to the change in size of the nucleon. In chiral models
such as the Skyrmion or the o model, the size of the soliton varies as the
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inverse of M/M,. In the Nambu—Jona-Lasinio model this is net strictly true
because the size also depends on the ratio 4/M,. Recent calculations of this
effect [21, 22] give contradictory results.

7. Conclusion

So far we have only considered quantities which have a logarithmic de-
pendence on the cutoff. We have seen that they do not depend significantly
on the way the high momenta are cut off so long as observables such as
meson masses and the pion decay constant are used to fix the parameters
of the model. This is, however, not the case for quantities which depend
quadratically on the cutoff such as the quark condensate (Jg{:) or the in-
verse coupling constants a? and b for example. The current quark mass,
fitted to the observed pion mass, is another example not considered in this
lecture. In lattice calculations, such quantities have abnormal dimensions
[24]. The Table below compares such quantities calculated with a sharp 4-
momentum cutoff and with a proper time regularization. The values quoted
are obtained with a constituent quark mass My, = 0.5 GeV:

sharp proper
Mo = 0.5 GeV 4-momentum time
cutoff regularization
a? 0.17 0.11
[(GeV)?]
b? 0.165 0.109 (7.1)
[(Gev)?]
b* + vT(0) 0.057 0.109
[(Gev)?]
(6% + vT(0))/a? 0.33 0.98
(u)'/?® -221 -304
[MeV]

If one assumes a one-gluon exchange potential between the quarks, a
Fierz transformation shows that the coupling constants of the Lagrangian
(2.2) are in the ratio b?/a? = 2 which is far from the values displayed in
Table (7.1).

The significant differences appearing in Table (7.1) show that quantities,
which have a quadratic dependence on the cutoff, are more dependent of the
high momenta than quantities which have only a logarithmic dependence.
This is expected and it does not make much sense to fit both kinds of
quantities indiscriminately as is often done. If one wishes to fit both kinds
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of quantities, an extra parameter should be added to the model which can
modify the profile function used to cut off the high momenta [23, 24]. This
can be done both for the gauge breaking momentum cutoff method or for
the proper time method which preserves the gauge invariance of the quark
loop. Two regularization methods can then be compared by fitting one
quantity, for example the quark condensate, which depends quadratically
on the cutoff.

We see that it is very important in phenomenology to distinguish quan-
tities which have a logarithmic and quadratic dependences on the cutoff.
Otherwise comparisons of values obtained for meson masses and quark con-
densates, for example, are meaningless.

APPENDIX

When a sharp 4-momentum cutoff A4 is used, the functions defined in
Section 3 are:

= [ 1
" <2">2</A I EDICTED

dur ydy
/2(21)4/ (y+¢2+’4~’-(1—u2))2’ (A.1)

_ [ dur? (1-u?)ydy
S(g)= / 2(27‘.)46/ (k2 + ¢+ g}(l—uz))z ) (A.2)

f du f du k? + q?u? 2
T(q) = d*k - .
@ :{ 2(21)‘_/: 2(27f)‘k</A ((k2 +o 4+ L(1-wr)) B4 ¢’)
(A.3)

When a sharp cutoff is used in the proper-time regularization, the functions
are:

flg) = (21‘_)4/d‘k / sds/dz exp | —3zc(k 1g9)* + ¢%)

1/43

—8(1 - 2)((k + 39)* + ¢%)]

2o T (v Tae)]. o
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1

50 =g [ 5 7 Tem |- (¢4 La-w)|a-w), @s

-1 1/42

T(g)=0. (A.6)
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