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Some results on the effective action of a Dirac field in the background
of a chiral mass term are presented. They concern the convergence of the
gradient expansion and a new numerical method for evaluating the zero
point energy in a nonperturbative way.
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1. Introduction

The effective action of a quantum field in the background of a classical
field configuration plays an improtant réle in the quantization of classical so-
lutions, leading to an energy correction or in providing an effective potential
that contributes to the dynamics on the same level as the classical potential.
Among the recent applications the quantum fluctuations of fermions in a
background field, given by a chiral mass term of the hedgehog type,

m (%) = my, exp (i'ys?ci:'(é')) = me (¢° + i757°¢°%) (1.1)

has attracted interest in the context of the chiral quark model (1] or Nambu-
Jona-Lasinio type models [2]. We will discuss here this application mainly.
We will present some analytic results [3,4], concerning the validity (con-
vergence) of the gradient expansion and a new numerical, nonperturbative
method for evaluating the full renormalized zero point energy [5,6] in a
Lorentz covariant way. It has been applied previously to the case of a scalar
field (5] and a spin } field [6] with a scalar, r dependent mass term. We will
present here results for the chiral mass term (1.1).
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In Section 2 we will define the action and comment on its perturbative
expansions and especially on the convergence of the gradient expansion.
In Section 3 we will describe the numerical evaluation. The results will
be presented and discussed in Section 4. Concluding remarks are given in
Section 5.

2. The effective action and its perturbative expansion
The (one loop) effective action for the fermion field is defined as

Sex = —iln det {(i70 - m (2)) / (770 — meo)} , (21)

where we have divided by the free effective action. m () is the chiral mass
term given in (1.1) and m,, its limit as r — co. There are many ways to
give this formal expression a concrete meaning; the most immediate one is
to diagonalize the generalized Dirac operator and to do the eigenvalue sum
(or rather integrals), a procedure which implies some regularization, and
there are many of them (see e.g. [7]). We will not be very much concerned
with this question since we will consider the renormalized action, which
finally should not depend on the specific regularization chosen. This implies
that we choose a way of evaluating the effective action that is close to the
usual perturbation expansion. We will do so even when applying below a
numerical method that gives the full nonperturbative result. In the following
we assume that all the formal manipulations are performed on that part of
the effective action that is obtained by omitting the divergent diagrams in
the expansion with respect to Am (£) = m (Z) — my (“Am-expansion”):

Ser = zi % T { (s am)"} (2.2)

where Sg’) denotes the free Euclidean Dirac propagator. For a static back-
ground field the effective action is related to the zero point energy by
Sex = —TE, where 7 denotes the (Euclidean) time. One can then relate E,

to the time Fourier transform of the full Dirac propagator in the external
field Sg (Z,Z',v) as

+o00
. dl/ N — =2 -
Ey = --z/ 2—“_1// d*z ’I‘r{SE(a:,z',u)— Séo)(z,z ,V)} . (2.3)

Sk (Z,2',v) satisfies
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(iv — H)Sg (£,8',v) = -6 (Z-2"), (2.4)
with
H=-iaV +7°m (&) . (2.5)
Introducing
H}=-A+ml (2.6)
and
V() = iy Vm (%), (2.7)

one can expand Sg as [8]

k
SE“Z( 1)*( oy ) Vg:ﬂz(iy+ﬂ), (2.8)

the so-called grad.lent expansion. The gradient expansion has been used in
the present context to derive Skyrme type terms from the one loop effective
action [9]. We think, however, basing on the results of Ref. [3], that it is not
helpful for the discussion of stability. The gradient expansion allows power
counting arguments [3,9] for large and small R, where R is the scale of the
hedgehog characterized by writing the chiral angle as @(r) = @4 (r/R). The
contributions vanish for N odd. One finds that the term of order N = 2n
behaves for small R as R**~! for n > 1 and as RlogR for n = 1. Logs
appear also for n > 1, but multiplied with higher powers of R. For large
R the leading behaviour of the 2n-th order term is R~?"*3; the resulting
expansion with respect to powers of 1/R is sometimes also called gradient
expansion. Which of these power counting results is relevant depends obvi-
ously on the convergence properties of the series (2.8) and one can indeed
derive such properties [3], since the expansion is of the form of a resolvent
expansion. Obviously (for a more subtle treatment see [3]) one has essen-
tially to estimate the Hilbert Schmidt norm of the operator (¢? + H2) ' V.
One finds, after taking the scale parameter out of the integral,

1"+ H) VP = z [(264(2))" + 25in? Oo(2)] . (29)

0

This implies that the gradient expansion for a hedgehog is convergent for
small R in 3+1 dimensions. This contradicts the intuition that the expan-
sion should be good for large R since then “the gradient becomes smali”. If
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the chiral angle has to change from = at » = 0 to zero at r = oo, a small
gradient implies a large extension of the hedgehog and this leads to a factor
R3? in the norm, while the gradient lowers this by a factor R~? only ( the
situation is of course different in 1 + 1 dimensions). This convergence at
small B does not imply necessarily that the large R expansion with re-
spect to 1/ R makes no sense. We just do not see how one could prove that
it does. However, in 1 + 1 dimensions where the role of large and small R
is reversed the conclusions drawn from the small R expansion are certainly
wrong. Also, in 3 + 1 diménsions a bound state appears that persists for
large R and the behaviour of the effective action for large R must necessarily
depend on how it is taken into account (see the end of Section 4).

An immediate consequence of the convergence at small R is that the
leading Rlog R behaviour will not be compensated by higher order terms
and the vacuum instability [10] implied by it will persist. Using the same
expansion, but another trace one can also [8] derive an expression for the
fermion number induced by the background field. It turns out.[4] that the
induced baryon number vanishes at R = 0 at least as R*. If it is constant,
as one may derive generally, it must be zero throughout, unless one changes
the physical state at the value of R where the bound state crosses E = 0.
For large R the lowest (third) order result goes to the topological invariant

1
12732

which is 1 for the standard hedgehog. However, the gradient expansion
does not converge there, so the association of the topological number with
the induced baryon number [11] cannot be based on the gradient expansion
[4], although this is usually done. There is a relation between topology
and the bound state, though: It is indeed easy to see that for R — oo
the Dirac equation for the K* = 0t can be solved explicitly and that
E (0%) = my cos(©(0)) in this limit. However, it is hard to see how third
order perturbation theory could know this.

While these results give some insight into the behaviour of the zero
point energy near R = 0, the higher terms in the gradient expansion are
hardly accessible to analytic evaluation and if one wants to learn about the
behaviour of Eo(R) at finite R ~ O (1/m,,) one will have to have recourse
to a numerical calculation. This will be discussed in the next Section.

Ntor —

/daEabcaf.‘,‘k¢°Vi¢5Vj¢ch¢d, (2-10)

3. Numerical evaluation of the zero point energy

Various approaches have been taken to find the numerical value of the
zero point energy at finite values of R. The most immediate one is to find
the eigenvalue spectrum of Dirac operator. This has been done in Ref. [12],
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making the spectrum furthermore discrete by introducing a space bound-
ary. This can be avoided by using the scattering phase shift, as it was done
for the Sine Gordon model in the seventies [13] and recently also [14] for
the chiral quark model. These calculations imply noncovariant intermediate
cutoffs, and even if one renormalizes at the end this is a dangerous method
[14]. Since the background field breaks Lorentz invariance, it is important
to be on safe ground with Lorentz covariance. In the case of the self en-
ergy of quarks in a bag [15] — which is even finite for mgyax = 0 — only
those results were correct and consistent with each other where the leading
order graphs had been taken out before the numerical evaluation. Level
summation techniques failed to give correct results. The situation may be
less critical here and in cutoff theories one may not even care about Lorentz
covariance but it is certainly useful to have a method [13,14] that respects
it.

In order to avoid inessential complexity we will consider a very simple
case, that of a scalar field with an » dependent mass term. The calculation
in the chiral quark model can be reduced to this problem except for having
a field with several components. In analogy with (2.3) we can express the
zero point energy as

Ey= - / dv 2/(G(" ', v) - G°(%,%',v)) &z, (3.1)

where G (£, 2, v) satisfies

(~A+v*+mi +V(2)G(&Z,v)=8(F-3"), (3.2)
where the potential V is equal to m? (Z)—m?, and will be assumed to depend
on r = |Z] only. According to what we have discussed above we should

take out the orders (0) to (2) and do them separately, using the covariant
expressions derived from expanding the effective action, renormalize them
and add the finite parts back. We then do not need cutoffs in the numerical
calculation and the order in V is a Lorentz invariant concept. It is convenient
to introduce the notation (r) for an expression that corresponds to the exact
summation of the expansion in V from order n to co. In this sense we have

now to evaluate E(3) and therefore G®).
Using the sphenca.l symmetry we expand

G(%,2,v)=Y 2+ 1)a(rr,v), (3.3)

where g; (r,7’,v) is the Green function associated with the differential equa-
tion for the Euclidean partial waves

(Fm+i5- 52 -ve) s =wae. G
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The free (m = m,,) solutions of this equation are the modified spherical
Bessel functions 4;(z) and k;(z) where z = kr and x* = v? + m2,. Let
£ (r) = ki(z) (1 + Af (7)) and f7(r) = i1(z) (1 + ki (r)) be the solutions
regular at r = co and r = 0 respectively and let h satisfy the boundary
condition h¥(r) — 0 as r — co. Then

a (7" 1", V) = gl(O) (7" 7"’ V) (1 + h?- ('l‘> )) (1,+ hl_ ('r<)) y (3'5) |

where ¢{” (r,#',v) = — K14 (2<) ki (25) is the free Green function. The A
can be evaluated by numerical integration of the differential equation ob-
tained by substituting the f* in (3.3):

a? 1 bt'(r)\ d
{gr2(Grd) )ro=ver e+, 69
where we have introduced b = k; and b; = i;. The solutions h,i vary only
in the region where the potential changes and become constant for small r
(and vanish for large r). They are obviously of first and higher order in the
potential, i.e. of order (1).

After we know how to evaluate the full Green function g; we have to
find a way to remove from it the leading orders in V. This implies that
we have to find a way to remove the leading orders from the A". This can
be done by applying the integral equation associated with the differential
equation (3.6) and the boundary conditions. We have

hE(r) = /dr’ K (r,0,0) V(') (1 + B (")) . (3.7

Here Kt (r,7',v) are kernels corresponding to the boundary conditions of
k. For their explicit forms see [14]. The right hand side can be expanded
with respect to V. We have in symbolic notation

hE(r) =Y ey, REY = / Krve®™, m9=1. (3.8)

n=1

Using these relations we can calculate h,i(") for n = 1 and 2 and subtract
it so as to retain only the order (3) part of g,. This means, however, that
we have to remove almost all of the A and of g; by subtraction since the
divergent parts dominate of course the integrands. This is numerically haz-
ardeous. We note that we can use the integral equation in a better way,
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using the fact that the numerical solutions of the differeritial equation A

are exact and of order (I). Therefore we may obtain h,i(") as (in symbolic
notation)

i(n+l) / KEVRE™, REM = ¥ | (3.9)

instead of obtaining it by subtraction of the first (n — 1) orders from hi.

If calculated as a difference 'hf(") will have the same absolute error as h,
while it will have only the same relative one if calculated via Eq. (3.9). The
reduction of the amplitudes is of the order 10-° at some values of » and [ if
the two leading orders are subtracted, so the gain in numerical accuracy is
important and vital for a reliable calculation. Once we can calculate hE™)

and hf(") we can express g,( )

o = g0 (WP 4+ 5 ® 4 i OB 4 OB Y (3.10)

which contains only terms that are genuinely of at least third order. It
remains to perform the integration over r, the summation over I and the
integration over v. For R = 0 (m!) summations and integrations converge
well. If R is increased beyond 5 m_! one has to go to values of { of the order
of 20; then the typical factors »r¥+! occuring in the integral kernels lead to
strongly varying integrands and either the CPU time increases strongly or
the accuracy becomes poorer.

4. Numerical results

We present in Fig. 1 the results of a calculation of the zero point energy
of fermions in the chiral model. R and E, are given in units of mZ! and
M, Tespectively. For @, (r/R) we have chosen the function

6y(z) = x (1 — tanh z) . (4.1)

the solid line shows the result for the finite part E(s) the dash-dotted line is
the finite part of E(z) the renormalized second order contribution that can
be evaluated analytically up to integrations. E(a) behaves as R® at R = 0,
as it should according to our power counting result (Section 2) because it

is actually of order (4) since the third order does not contribute. It has a
kink at R =~ 2.7 which is related to the fact that there a bound state level
(dotted line) crosses E = 0 and therefore also the v integration contour
in the complex v plane. If the negative of its energy is added, implying
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that the state continues to have baryon number 0 and implying analytic
continuation of Eo(R) considered as a complex function, Eo(R) continues
as the dashed line. It is evident that this curve has no tendency to show
the R~! behaviour expected from the 1/R expansion mentioned in Section 2
for a contribution of fourth order. The originall result (full line) decreases
possibly as 1/R but it is hard to understand how this could be derived from

the gradient expansion. The finite part E((,a) is especially for R > 1 of the
same size as the perturbative second order contribution, so it has certainly
to be taken into account in the dynamics of chiral hedgehogs. This agrees
with similar results of [12,14].

1.0 —T T T T T T T

5. Conclusion

We have presented in this lecture some results on the effective action
induced to the Dirac vacuum by the presence of a chiral mass. We have
pointed out the limitations of the gradient expansion and we have described
a numerical nonperturbative method which allows to calculate the renor-
malized zero point energy in a covariant and numerically stable way. Its
application to recent models should be useful.
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