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On the basis of the o-model, it is argued that there may exist a new
phase of matter at densities of the order of a few nuclear densities, and
temperatures below ~ 100 MeV. The phase consists of a gas of quarks with
constituent-like mases, submerged il a periodic chiral field — a “pion con-
densate”. The appearance of this phase is a general feature of the o-model
and other models based on the chiral dynamics (e.g. the NJL model}, and
it occurs for a broad range of model parameters. Phenomenological con-
sequences on the physics of dense matter are discussed, in particular we
describe interesting magnetic properties of the phase.

PACS numbers: 12.38.Lg

1. Introduction

This talk will have two aspects: one is the physics of dense matter,
with possible phenomenological consequences for neutron stars or RHIC.
The other aspect is more formal, and concerns analysis of a class of periodic
solutions to the o-model [1] in 3 + 1 dimensions. Our basic results [2,3] can
be stated as follows:

1) At densities of the order of a few nuclear densities, and at temperatures
below ~ 100 MeV, chiral quark models predict a new phase of matter

— quark gas in a “pion condensate” [2]. The result is obtained at the

mean-field level, and for a wide range of the model parameters.

2) We have found solutions to the o-model in 3+1 dimensions which are not
translationally uniform, but nevertheless are analytic down to the one-
loop level {3]. This may serve as a test ground for various approximate

* Presented at XXX Cracow School of Theoretical Physics, Zakopane, Poland,
June 2-12, 1990,

(145)



146 Ww. Bnomdwsxl, A. KoTLORZ, M. KUTSCHERA

methods, as well as illustrate difficulties with chiral models at the one-

loop level. We will discuss these issues at the end of this talk.

Let us begin with a reminder of the traditional view on the QCD phase
diagram, which is shown in Fig. 1. The horizontal axis is the temperature
T, and the vertical axis is the quark chemical potential u (equal to 1/3 of
the baryon chemical potential). The value of the chiral condensate ($1) is
used as the order parameter. At low values of T and u the value of (1Z¢> is
nonzero (phase with spontaneously broken chiral symmetry, labeled “N”),
and in the outer region (1,51[)) vanishes (phase with restored chiral symmetry,
labeled “R”). The boundary between the phases corresponds to the chiral
transition. u

Lee—Wick transition

R
N <PyY>=0
<yy>=0

300 MeV

150-200 Mev T
Fig. 1. The traditional phase diagram of QCD. At low values of the quark chemical
potential x and temperature T the system is in the chirally broken phase, “N”, with
($¥)# 0. For higher p and T the chiral symmetry is restored (phase “R”) and
($9)=0.

The chiral transition is well established for ¢ = 0, i.e. for zero net
baryon density (same amount of quarks and antiquarks). For this case there
are realistic lattice QCD calculations [4], which indicate that the transition
occurs at temperatures of the order of 150-200 MeV (Fig. 1). However, for
g # 0 (nonzero baryon density) at present there are no reasonable lattice
calculations. Attempts have been made, but with realistic fermions the
lattice size is very small (4*). Thus departing from the p = 0 line in Fig. 1
presents, for the fundamental theory, a serious difficulty. On the other hand,
the finite baryon density region can be analyzed in effective chiral models.
The transition from the broken to the restored phase at T = 0, which occurs
as one increases u, is usually referred to as the Lee-Wick transition [5] (see
Fig. 1).

What we want to point out now is that previous analyses of quark mat-
ter carried in the framework of effective chiral models lacked an important
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degree of freedom — they all assumed that the value of (11_:1,1:) is spatially
uniform. Departure from this assumption leads to the appearance of new
phases in quark matter. The example presented in this talk is analogous to
the “neutral pion condensate” of nuclear physics [6-8], and the basic result
is depicted schematically in Fig. 2. In addition to the “N” and “R” phases
present in Fig. 1, we find a new phase, labeled “C”, which is the “pion con-
densed” phase. This phase has not only (J)d)) # 0, but also the expectation
value (Jvi‘yﬁ"t/:) # 0, and their values oscillate in the coordinate space:

(BAWE) = deos[q- (- 7)]
(BFirsr* (7)) = dsin[7- (7 - 7o) ,
(im0 )
We have introduced ¢ and § as parameters, which will later be determined
dynamically. The value of the vector 7o is irrelevant, and we choose for
simplicity 7, = 0. Of course, the “normal” phase “N” has (¢()y(7)) =
const, (J:(i’)i'ys'r“t,b(i')) = 0, and in the restored phase “R” all condensates
vanish.

I

300 MeV

Baryonic matter AN

150-200 mev T

Fig. 2. Our speculation, based on the results of the o-model to be presented in
this talk: in addition to the phases of Fig. 1, a new phase, “C”, appears. This
phase has the chiral condensates of the form (1). The quark chemical potential
u at which the phase shows up corresponds to baryon densities of the order of a
few nuclear saturation densities. The region inside the dashed line corresponds to
hadronic matter (confinement), which is not described by our approach. The outer
region corresponds to the quark gas (deconfinement).

Fig. 2 shows that at sufficiently low temperatures (in our model, below
100 MeV), as we increase the baryon density of the system we first pass
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from the “normal” phase to the “pion condensed” phase, which happens at

a density of the order of a few nuclear densities (such densities correspond

to the value of u at which the phase shows up), and at still higher densities

the transition to the restored phase occurs. In this talk we will demonstrate
-how the behavior of Fig. 2 is realized in the o-model.

A digression is in place at this point. There is another prominent phase
transition in QCD — the deconfinement phase transition. Again, the lattice
gauge calculations (with g4 = 0) show that it occurs at temperatures around
150-200 MeV, which coincides with the temperature of the chiral transition.
At low densities and temperatures the quarks are clustered in hadrons.
Since in our calculation we assume that the quarks are not clustered, but
constitute a free gas, our approach is justified only in the deconfined region
(above the dashed line in Fig. 2). We can see that there is room for the
new phase only if (at a given temperature) “declustering” occurs at a lower
density than the chiral restoration. This situation may be viewed as follows:
at low densities we have isolated hadrons. As the density is increased, the
“bags” start to overlap, and the quarks can percolate. This is a geometrical
effect, and it is hard to imagine why it should occur at the same density as
the chiral restoration, which is a dynamical effect. Thus, it is possible that
there exists a quark gas phase with broken chiral symmetry. In this talk we
assume it as a conjecture, and show that if this happens, then the system
develops a “pion eondensed” phase.

It would certainly be desirable to describe the hadronic phase within
the model, but this is beyond the scope of our current research.

2. Pion condensate in the o-model

You have already heard today the talks by Ripka [9] and Christov [10]
about models based on chiral dynamics. The relation of these models to
QCD is discussed in Ref [11]. Ripka [9] and Christov [10] concentrated on
the Nambu-Jona-Lasinio model [12], and we shall work in the framework of
the Gell-Mann-Lévy o-model. The differences are irrelevant at this point
and will be discussed in some detail later.

The Lagrangian of the linear SU(2)xSU(2) o-model [1] has the form

L= J)[w —glo+ i7sr“1r°”¢ + 10 a) + 1 (0" 7°) = Ve, 7], (2)

where 1 is the quark field, g is the coupling constant, ¢ and 7 are the SU(2)
chiral fields and V is the “Mexican Hat” potential [1]

Vie,n% = 1‘43— [0? + xox® - u2]2 —co -V, (3)
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which generates the spontaneous breaking of chiral symmetry. In the vac-
uum 0., = —F,, where F, = 93 MeV is the pion decay constant. The
values of parameters in Eq. (3) are related to the pion and o masses in the
following way:

2 2 3 2
\2o e~ . mi—3m; g
L il S WL il S} R (4)
2F? m2 — m2

The constant V, is such that V vanishes in the vacuum. In the following
we shall work in the limit of exact chiral symmetry (m, = 0). The value of
the o mass will be left as the parameter of the model. The preferred value
for m, is around 1 GeV, which then could be identified with the scalar-
isoscalar resonance f,. Looking at Fig. 3 we can see that m, controls the
mesonic volume energy in the restored phase (¢ = #* = 0), which equals
B = m2F?/8. This is the energy needed to break the chiral condensate.
For m, = 1200 MeV, which is the preferred value of Ref. [13], B equals to
140 MeV /fm®. The second parameter of the model is the coupling constant
g. Models of the nucleon use g between 4 and 5 [13-15]. Instead of g we
shall frequently use my = gF,, the quark mass in the vacuum. In this talk
we shall concentrate on the effect of the appearance of the new phase, and
this will not depend on a particular selection of the parameters.

(MeV/fm> )

. 400 200
S R o (MeV)

Fig. 3. The “Mexican Hat” potential (3) for m, = 1200 MeV and m, = 0. The
quantity B, the value at ¢ = @ = 0, is the volume energy necessary to break the
chiral condensate.

In phenomenological models [13-15] the system (2) is treated in the so-
called mean-field approximation: the ¢ and = fields are classical c-number
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fields, and only valence quarks are included. For a stationary case the
Euler-Lagrange equations assume the form

[—ia -V +g8(c+ i‘ys‘r“w“)] ¢; = E;p;, (5a)
Vz = - + gN ZSOJ(PJ ’ (5b)
j€val
. OV
Vig® = 5= + ol ngqoms‘r Py (5¢)

where ¢; are the Dirac spinors, E; are the corresponding singleparticle
energies, “val” denotes the set of all valence orbitals, and N, = 3 is the
number of colors.

Various solutions of Eq. (5) are known. In models of baryons one uses
the hedgehog solution [13-15]. To describe space-uniform matter one applies
the simplest solution which has a constant o, vanishing 7, and plane-wave
Dirac spinors [16]. A very interesting class of solutions of Eq. (5) has been
found by Dautry and Nyman [8]. These authors have used them to describe
the pion condensation in nucleonic matter. Here we shall use the solution
desrcibing the “neutral pion condensate”. It has the following form for the
chiral fields:

o=-m/gcos(q-%), = =-m/gsin(¢q-Z), w'=7*=0. (6)
It represents a chiral field oscillating in the ¢ direction, with amplitude m/g.
For the special case § = 0 m plays the role of the quark mass. Note that
the solution has the property that ¢? + x? = (m/g)" is constant in space,
hence it lives in the bottom of the “Mexican Hat” (Fig. 3), and “winds”
around it as one goes along the ¢ direction in space.

Solutions discussed in this talk will have saturated isospin (equal
amount of up and down quarks). More general cases are discussed in [2].

The Dirac equation (5a) with the fields (6) acquires the form

[~ia- ¥+ pm exp (157 2)| @ () = E () %5 (2) - (1)

Using a trick with similarity transformations [8], Eq. (7) can be easily solved.
Introducing space-independent spinors x (7),

x (P) = exp (Jivs7ed - £ + ipZ-) @, (Z) (8)
we find that the Dirac equation (7) becomes
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(@-7—- L& gysms + Bm) x (F) = E (5) x (P) - (9)

The remarkable simplification is that this equation is space-independent,
and further diagonalization is trivial [8]. The spectrum is

E(p) = +¢e* (p) for positive energy states,
E(f) = —e* (P) for negative energy states, (10)

where

. 1/2
6*=[pi+pﬁ+m’+’;iq\/pﬁ+m’] : (11)

We have introduced p, and p; as the components of p’ perpendicular and
parallel to §. The + sign in (11) distinguishes the types of quasiparticles
[8]. The dependence of spectrum (10-11) on the wave vector § is drawn
schematically in Fig. 4. The solid line is for 5’ = 0, and the dashed lines are
for p, = 0, py = m (long dash) and for p, = m, p; = m (short dash). The
four branches: E¥, E-, —E* and — E~ are indicated in the figure. We
also note that the spectrum is charge symmetric. We also note that levels
belonging to the E~ branch go down as ¢ increases. This immediately
indicates the possibility of lowering the energy by increasing ¢g. The energy
of occupied valence quarks is decreased as we increase the value of ¢, and
this is the key to the formation of the pion condensate. Of course, there are
also other terms in the system’s total energy (see Eq. (12)), but the basic
understanding of the effect can be extracted from Fig. 4.

Fig. 4. The spectrum (10-11) of the Dirac equation (5a) with chiral fields (6). The
continuous lines are for p; = p = 0, the long dash lines are forp, = 0 and py = m,
and the short dash lines are for p; = py = m. The labels E*, E~, —E* and —E~
denote the four branches in the spectrum. In the valence approximation, the posi-
tive energy levels are occupied, up to some Fermi energy.
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It is easy to verify that the ansatz (6), together with the corresponding
forms for the Dirac spinors ¢,, are in fact solutions of the Euler-Lagrange
equations (5). What has to be determined now are the values of m and § for
which the system acquires minimum energy. The energy density £ of our
system consists of three contributions: from valence quarks, from kinetic
terms of the o and = fields, and from the “Mexican Hat” potential V:

£= NN (‘2% [+ (3)0 [er — e ()] + &= (@0 [er — e~ ()]
+ 1g*m?/g* + m2/ (8F?) [m*/g* - F?]", (12)

where Ny = 2 is the number flavors, ¢ is the Fermi energy and 0 is the step
function. The expression for the baryon density N is [2]

N:N,]%[o[ap-e+(m]+o[ep_e—(m]]. (13)

We now have to minimize £ with respect to ¢ and m at a fixed density
N. This amounts to minimizing the grand thermodynamical potential {2 at
zero temperature,

2(m,§) =€ — NeepN . (14)

Of course, in this case £ is just the quark chemical potential.

In their work Dautry and Nyman [8] made nonrelativistic approxima-
tion on expressions (13) and (14). This was justified in the application to
nucleonic matter. In our case this would not be justified, since the quarks are
lighter than the nucleons, and also we want to go to much higher densities.
Fortunately, integrals appearing in (13) and (14) can be done analytically
[2] and there is no reason to make any approximations to the formulas.

The results of our calculation of quark matter are shown in Fig. 5 (case
mo = gF, = 300 MeV) and Fig. 6 (case mo = 500 MeV). Fig. 5a shows
the zero-temperature equation of state. The energy per baryon, E/N, is
plotted vs baryon density, here denoted by n. The upper curve is the result
of the calculation where we have imposed § = 0, as has been always done
in other works on the quark matter in chiral models. This curve consists of
two parts: at low densities (label “N™) it has nonzero expectation value of
o, and the chiral symmetry is broken. The value of m = —go is plotted in
Fig. 5b. We can see that the curve “N” drops to zero at the density 1 fm~3,
and at this point the chiral restoration occurs. Beyond this point the curve
in Fig. 5a continues as the restored phase, “R”. But this curve is not the
ground state. At densities above 0.07 fm~3 the ground state is described by
the curve “C”, which is the phase with pion condensation, and has nonzero
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q (see Fig. 5¢). Looking again at Fig. 5b, we notice that for the “C” phase
m decreases more slowly than for the “N” phase. At very high densities,
outside the frame of Fig. 5c, the value of m drops to 0. This phase transition
is first order. We have also checked that the transition from the normal to
the condensed phase is second order.

1500

m,=300 Mev

1300

E/N (MeV)

1100

T S —
0.00 0.50 1.00 1.50 2.00

n (fmo)

m,=300 MeV

300

m (MeV)
N
8
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m,=300 Mev

q (fm)

n (fm)

Fig. 5. The results for T = 0 and mo = gF, = 300 Mev. Figure (a) shows
the equation of state, i.e. the dependence of energy per baryon, E/N, vs baryon
density n = N/V. The upper curve consists of two pieces: normal phase, “N”, at
low densities, and restored phase, “R”, at higher densities. The transition between
“N” and “R” occurs at the points where m drops to zero on curve “N” if Fig. 5b.
The lower curve in Fig. 5a is the phase with the pion condensate, “C”. It is the
ground state of the system, for densities higher than 0.07 fm~3, which is the point
where g raises from zero in Fig. 5c. Figure (b) shows the behavior of optimum m
on the baryon density. It drops from the value mg = gF, = 300 MeV at n = 0, to
zero at n around 1 fm~2. The curve “C” decreases more slowly than “N”, and it
approaches 0 at very high densities, outside the scope of the plot. Figure (c) shows
the dependence of q on baryon density.

Fig. 6 shows the same as Fig. 5 for a higher value of g (m, = gF, = 500
MeV). The qualitative behavior does not change. The only difference worth
mentioning is that the curves in the equation of state (Fig. 6a) have a
minimum and the system develops saturation [2}. Recalling our remark in
the introduction on the baryonic matter, we should stress that our results
are not realistic at low densities, lower than, say, twice the nuclear saturation
density. Thus, at low densities there is baryonic matter, and only at higher
densities our assumption of the quark gas can hold.

3. Equation of state and magnetic properties
of the pion-condensed quark matter

Quark matter at low temperatures can exist in cores of neutron stars
provided the neutron matter equation of state is sufficiently soft. We can
read from Figs 5a and 6a that at densities of the order of a few nuclear
densities, the condensed phase has the energy density lower than the “N”
or “R” phase by a few tens MeV. Thus it leads to an equation of state
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Fig. 6. Same as Fig. 5 for gF, = 500 MeV.
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which is even softer than for the massless quark gas. In Fig. 7 we compare
this equation with several conventional equations of state which are used to
describe dense matter. What we can see is that our equation of state, labeled
“Q”, is not so much different from some traditional equations. Therefore
it will not lead to significantly different results in, for example, the radius-
mass dependence of the neutron star. To have a chance of detecting the
pion-condensed quark matter we have to look for other signatures.

2500

n

[=3

8
;.

P (MeV/fm®)
g

1000

1000 1500 2000 2500
4 (Mev)

Fig. 7. Comparison of our equation of state with several conventional equations,
drawn on the pressure-baryon chemical potential [27] plot. “Q” labels the pion-
condensed quark gas for the case my = gF, = 500 MeV. The other curves corre-
spond to Walecka’s equation of state “W” [16,17], Pandharipande’s neutron “P”
(18] and hyperon “H” [19] equations of state, and for the Friedman-Pandharipande-
Ravenhall “FPR” [20] equation of state.

An interesting possibility is given to us by the fact that the phase pos-
sesses nonzero magnetization [2]. Assuming Dirac magnetic moments for
the quarks we have p, = —2u4, where u, and p, are the up and down quark
magnetons, respectively. The magnetization M is given by the formula

M=y (l‘usu + l‘dsd) ) (15)

where s, and sy are the spin densities of up and down quarks, and ¢ = 2
is the gyroscopic factor. The spin densities can be calculated (2] from the
definitions

su@) = 5 (P (1 £ 75) 102, 9) (16)

where ¥, = %757073. The point now is that whereas for the normal phase
both s, and syq vanish, for the pion condensed phase they do not, and,
as a consequence we get nonzero magnetization (15). The appearance of



Quarks with ¢ Pion Condensate (...) 157

this interesting feature can be traced back to the spectrum of Fig. 3. We
populate valence (positive energy) levels up to some Fermi energy. There
are two branches: E+ and E~. The easiest interpretation of these branches
can be done in the nonrelativistic approximation [8]. Then the E~ branch
contains levels with the spin antiparallel to the isospin: u; and d', and the
E* contains the states with the spin parallel to the isospin: u' and d;.
The E- branch is energetically favored, hence there are always more states
in the system with antiparallel spin and isospin. As a result it gives the
nonzero spin densities in Eq. (16).

Our results indicate that in centers of neutron stars there may exist
cores (or shells) with pion-condensed quark matter, which possess a net
magnetization. Such cores, presumably with some macroscopic domain
structure, could contribute to the magnetic moment of the star, which in
this case would be a pulsar.

4. Finite temperatures

At the mean-field level, the extension of our calculation to finite tem-
peratures is straightforward. One has to thermalize the quark degrees of
freedom only, because, as will be explained in the following, the ¢ and =«
should not be treated as independent dynamical degrees of freedom. One
therefore should not include mesonic thermal excitations to the partition
function. We obtain the following expression for the grand thermodynami-
cal potential [16]:

] (Ta V,p;m, ‘i)

3
= _Tv/ d p3 Z |:]Il (1 +e(l-"‘z“)/T) +].Il (1 + e(ﬁ—t“)/T):l
(27)

"'vPa—w P (17)

where T is the temperature, Y — the system’s volume, p — the quark
chemical potential, m and ¢ — the collective parameters introduced ear-
lier, and 4 = N.N;. The quantities ¢* (¢ = +, —) are the quark (positive
energy) eigenvalues (11). The second term in the brackets comes from the
antiquarks. We have introduced # as the antiquark chemical potential, and
£* as the antiquark eigenvalues. Because the baryon number is conserved,
ji = —pu, and because the spectrum (10) is symmetric, £* = —¢®. The last
term in expression (17) comes from the “Mexican Hat” potential in the
Lagrangian (2). At the mean-field level, the mesonic contribution is [16]
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Po-x = -V [”’ 7?] . (18)

The equilibrium conditions

on

dm

o, 02

ry
TV.u G v,

=0 (19)

determine the optimum values of the collective parameters m and §. The
thermodynamical quantities are obtained from the standard expressions,

b= —a/va

£= (%Z [eon° () + o2 )]

N:Nf/ (:r’;s

The quark and antiquark distribution functions are, of course

> @ -m=@) (20)

a=+4,~

n® () = (L+e“™/7)7 | at (@) = (1+C-AT)TT 0 (21)

At present, we do not yet have the results of the full optimization (19).
In order to speed up the numerical calculation, we have reduced the number
of variational parameters from 2 to 1, by setting

m=mgy = gF, (22)

in the massive quark phase. This situation would occur in the nonlinear o-
model, since the constraint (22) corresponds to the condition o2 + #* = F2.
This simplification does not influence our qualitative conclusions, since the
effect is determined by the dependence on ¢.

For our presentation, most interesting are the phase diagrams. Fig. 8a
shows the u-T phase diagram for the calculation with m, = 1200 MeV and
mo = gF, = 300 MeV. We notice the existence of three distinct phases,
as announced in the introduction in Fig. 2. The new phase, labeled “C”,
shows up at values of the quark chemical potential around 400 MeV, and at
temperatures up to 100 MeV. Fig. 8b shows the baryon density-temperature
phase diagram. Since the phase transition to the “R” phase is first-order, we
also have regions with coexistence of phases, labeled “C/R” (condensed and
restored phases) and “N/R” (normal and restored phases). For other values
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Fig. 8. Finite temperature results, obtained in a calculation with frozen m, m =
mg = 300 MeV: (a) The u-T diagram — the phase with the pion condensate,
“C”, appears up to temperatures around 100 MeV. (b) The corresponding baryon
density-temperature diagram — because the transition to the restored phase is
first-order, regions of coexistence of phases appear. The arrow shows the nuclear
saturation density.

of m, and g the behaviour is qualitatively the same as for the parameters
of Fig. 8.

The conclusion one has to draw at this point is that, at least in the
framework of effective chiral models, one cannot make the assumption that
the mean fields describing condensates are translationally invariant. Allow-
ing for spatial dependence of the condensates lowers significantly the energy,
as well as introduces interesting magnetic effects. The pion-condensed phase
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is present at densities of the order of several nuclear densities, at which one
is tempted to make the usual assumption of transitional invariance.

5. Finite cutoffs in effective models

Now we want to make a few remarks to show that our results do not
depend on the particular choice of the effective chiral model. The prototype
chiral model is the Nambu—-Jona-Lasinio (NJL) model [12]:

Cna = 9idy + € [(99)” + (Fivsr"9)’] - (23)
The model is traditionally treated at the one-loop level, and a cutoff is
introduced to make calculations sensible. At this level, Lagrangian (23) is
equivalent to the following Lagrangian:
L=1vYiph+g [mznp + x“g@i’ys'r“tp] - %pz (03 + r“w“) , (24)
where o and 7 do not have explicit kinetic pieces, and serve as nondynamical
constraint fields. From (24) we get

o =g/p*(¥y), w = g/p? (PiysTY) , (25)

where the brackets denote expectation values in a given physical state. Be-
cause of (25), the Dirac equation following from (23),

Py + G [($9) + (PirsT*9) ivs%] = 0 (26)

is identical to the Dirac equation resulting from (24), provided
G=g"/u. (27)
The above is referred to as the partial bosonization of the NJL model [21].
Now, working up to the one-loop level in the quark fields, and substracting

the vacuum contribution (i.e. for 0 = —F, and 7* = 0) we get the effective
action

Soneloop = ’I‘l‘,\ IOg [w + g (U + i75‘ra1ra)] - ’I\r/\ IOg [za - gF‘l’]
- %/ d*z 4’ (0'2 + w“w“) . (28)

The subscript A reminds of the presence of the cutoff. When expanded in
the mesonic fields, the effective Lagrangian (28) contains the kinetic piece

12(1) [(0°0)" + (0*7°)] . (29)
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To have the canonical normalization of the o and = fields, i.e. to reproduce
the experimental value of F, = 93 MeV, one has to choose A in such a way
that [15]

(30)

-

E/N (MeV)
g

1.5 2.0

Fig. 9. Comparison of results of various chiral models. (a) The energy per baryon
vs baryon density for the o-model in the valence approximation (QUAD), and for
the Nambu-Jona-Lasinio model with the proper time (PT) and four-momentum
(MOM) regulators. (b) The dependence of g on baryon density for the models of

Fig. 9a.

We have repeated our calculation for the pion-condensed phase in the
described above NJL model. The results (at zero temperature) are shown in
Fig. 9 for the quark mass m = gF, = 345 MeV, which is the preferred value
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of Dyakonov and Petrov [17]. In the NJL model various regularization meth-
ods can be applied, in principle leading to different results [22]. Fig. 9a shows
the energy per baryon vs baryon density for the pion-condensed phase in the
NJL model with the proper time regularization (curve labeled PT), and with
the four-momentum cutoff (MOM). The curve labeled QUAD corresponds
to the pion-condensed phase in the so-called quadratic approximation to
the effective action (28), which is the assumption we made throughout the
remaining part of this talk, and it just leads to the Lagrangian (2). The
curve labeled “g = 0” is the normal phase, common to all above-mentioned
models. What we can see from the figure is that in the NJL model with
the proper time and four-momentum regulators the effect of the appearance
of the new phase is even stronger — the equation of state is softer. The
values of g (see Fig. 9b) are larger (curves PT, MOM) than in the case of
the o-model (curve labeled QUAD).

Thus we have demonstrated th existence of the pion-condensed phase
of quark matter does not depend on dynamical details of the model.

Concerning the effective chiral models with cutoffs, using the ansatz
(6) to of us (WB and MK) have showh [22] that, as soon as one departs
from the quadratic approximation to the fermion determinant in (28), the
model predictions become sensitive to the particular choice of the regulator.
Thus, there are ambiguities in effective chiral models with cutoffs. These
ambiguities can only be resolved by invoking QCD and working harder to
get a better effective theory.

6. One-loop physics

Now we shall briefly summarize some formal results described in detail
by two of us (WB and MK) in Ref. [3]. As we have already mentioned,
the great simplification in analyzing the system comes from*the fact that
the integrals in (12) and (13) are analytic. It allows us to get an analytic
expression for the one-fermion-loop effective action in background fields (6).
For the case of m = gF, we have found [3] the following result for the
renormalized one-fermion loop contribution

. V& —am?
£=1F¢ 7 {gz+0(q - 2m) [m’ (m*+¢*) 1og(g_L%-nTLn_)

1672
13m3 2
_A( 12 +gZ)q q2'4m2}}' (31)

The one-boson-loop contribution can also be evaluated in a closed form [3].
Results such as (31) are useful for two reasons. First, they demonstrate
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general features and difficulties of renormalized effective models, such as
nonanalitycities [23] or vacuum instability [24]. Secondly, they allow us to
test various approximate methods [25] used in the formalism of the effective
action, such as derivative expansions. For our system subsequent terms in
such approximations can be separately evaluated and convergence properties
of various series can be studied in detail [3).

To our knowledge, the form of the chiral field in Eq. (6) is the only
known spatially nonuniform case for which the one-loop contributions to
the effective action can be evaluated in a closed form in a 3 + 1 dimen-
sional model. For spatially uniform fields the task is, as is well known [26],
extremely simple. On the other hand, for hedgehog solitons the one-loop
contribution is achieved by tedious numerical calculations [15]. Our case
shows all the features of the spatially nonuniform solution, but maintains
simplicity.

7. Conclusion

What we have shown is that in chiral models at densities of the order of
a few nuclear densities, and at temperatures up to about 100 MeV, thereis a
new phase of matter: gas of quarks with constituent-like masses, submerged
in the background of the chiral field whose configuration has the form of the
“pion condensate”. The result seems to be very general and does not depend
on dynamical detail, or model parameters. Of course, a valid question is
whether effects not included can spoil our conclusion. In nuclear physics,
the interest in the pion condensation was ended after it was realized that
the short-range correlations weakened the pion-exchange force such that the
effect was pushed to very high densities. In quark matter we are interested
in high densities, and certainly correlation effects, such as e.g. the RPA
correlation energy, should be studied. The most important question is, of
course, whether the “C” phase exists in nature, and whether it can be shown
not within effective models, but using QCD. We feel, however, that as long
as chiral dynamics determines the property of the system, it reproduces all
physical effects, and our result should be taken with this in mind.

The authors acknowledge helpful discussions with G. Ripka, V. Soni
and S. Sharpe during the School in Zakopane.
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