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WARMING UP A NUCLEON*
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The problem of temperature dependence of nucleon mass is addressed
by considering a retarded correlator of two currents with quantum num-
bers of a nucleon at finite temperature T < F, in the chiral limit. It is
shown that at Euclidean momenta the leading one-loop corrections arise
from direct interaction of thermal pions with the currents. A dispersive
representation for the correlator shows that this interaction smears the
nucleon pole over frequency interval with width ~ T'. This interaction
does not change the exponential fall-off of the correlator in Euclidean
space but gives an O(T?/F?) contribution to the pre-exponential factor.

PACS numbers: 12.40.-y

The recent interest in finite temperature theories is connected with the
expected phase transition from hadrons to quark-gluon plasma at a criti-
cal temperature which ranges from 100 to 300 MeV according to different
estimates. It is a common belief that at higher temperatures in spite of
additional infra-red divergences coming from gluonic zero-modes the inter-
action between quarks and gluons becomes weak due to asymptotic freedom
and perturbation theory can be used at least in low enough orders [1]. At
low temperatures hadronic phase was investigated by Leutwyler and his
co-workers by using effective chiral Lagrangians [2]. They obtained low
temperature expansions for thermodynamic properties of hadronic gas such
as pressure and energy density and also for the quark condensate which is
given by a derivative of the energy density with respect to the quark mass.

It is also interesting to ask what happens to a particle mass at finite
temperature. However, at T # 0 thére is no unique definition of mass.
E.g. one can define the mass either as the position of pole in the propagator
or as the inverse correlation length at large space-like distances. These
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definitions do not coincide even for a free Fermi particle due to non-zero
lowest Matsubara frequency. For a discussion of different definitions of mass
at T # 0 see Ref. [3].

In this paper we are interested in a finite temperature nucleon. Intu-
itively one would expect that the nucleon melts with rising T and its mass
decreases. Indeed, as is seen, e.g. from the zero-temperature QCD sum
rules for the nucleon [4], its mass .is due to spontaneous chiral symmetry

breaking, my ~ (Jn[:)‘/a, and according to Gasser and Leutwyler [2] tem-
perature effects reduce the quark condensate, (1,01/;) = (¢y), (1-T?/8F?).
This is supported by calculations in the chiral sohton model |5], which give
nucleon mass decreasing with rising temperature. Here we shall approach
the problem of temperature dependence of nucleon mass by considering the
following finite temperature correlator?

Cn(w ) = =i [ at2e™3(=°) ({n(2), WO} (1)

‘We use the retarded correlator since it is just retarded (or advanced) Green
functions that are analytic at T # 0 and have spectral representations [8].
Here 7(z) is an external current with quantum numbers of a nucleon whose
explicit form is unessential. For definiteness we can take a protonic current
4] n = e%*(uCy,ub)ys7,d°, where C is the charge conjugation matrix.
In Eq. (1) (...); denotes the Gibbs average (4), = Tr(Ae #/T)/ Tre H/T -
where the trace is over the full set of eigenstates of the Hamiltonian. Due
to Lorentz invariance breaking at T # 0, Cr depends on two variables w
and p. The function Cr(w, p) is analytic in the upper half-plane of complex
w and has a spectral representation

Im Cr(w
Cr(w:7) = / e @)
At points w = w, = (2n+1)wiT, Cy coincides with the correlator calculated
in imaginary time approach. We are interested in Euclidean region w? — g2
< 0. For simplicity we shall put p = 0 and w = 2p,.

! Such a correlator was used in Ref. [6] to write hot QCD sum rules for the nu-
cleon. It was also investigated recently in Ref. {7] within the chiral Lagrangian
approach with an emphasis on its behavior in the vicinity of the pole p? = m?.
It was shown that in the chiral limit temperature corrections do not shift the
pole, but just renormalize the residue at this pole. On the contrary, here we
are interested in behavior of the correlator at Euclidean momenta. Below we
discuss relation of our results with those of Ref. {7] in some detail.
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At low temperatures only interaction with thermal pions must be taken
into account since the effects of massive particles are exponentially sup-
pressed. To this end one can use the chiral pion—nucleon Lagrangian (see,

e.g. [9])

* A — - 1 T -+ - -
L™ = — g 97,757 @u — TV (6 @Y, (3)

where 1 and ¢ are nuclean and pion ﬁelds, Pu = 0,8/(1+F*/4F2), F, = 93
MeV is the pion decay constant, g4 = 1.27. We shall cons1der pion as
massless. The correlator Cr at large Euclidean times is saturated by the
lowest state, the proton, see Fig. 1. At the one-loop level interaction with
the thermal pion gas is given by the diagrams of Fig. 2. Diagrams 2a and
2b correspond to direct interaction of pions with the current. Dashes on
the pion lines denote thermal pions. Since T <« m, the diagrams with
protonic temperature insertions are suppressed by a factor exp(—m/T) and
are unessential. The tree graph gives at w = ip,

X
C(l) — (t€070 -{-2771) . (4)
Potm
Here ) is the residue defined by the matrix element (0|7 |N) = Avy, where
vy is the nucleon spinor and m is its mass.

X
Fig. 1. Tree contribution to the correlator.

In calculating Diagrams 2a, 2b and 2d one must know matrix elements
(0| 7|N=x) and (0|n|Nnx). They are estimated using PCAC and are ex-
pressed in terms of commutators of the current # with the axial charge

= ("/\/5) f@ﬁo’)’s"""l d*z

(OlnNT*) = 2 (0lfn, QEIIN) = 527w on,

(OlniNe*s*) = — (0117, QL QN = 2. (5)

A rigorous formulation of real time perturbation theory at T # 0 is
given by the two-component technique. We are not going to describe it
here (for details see, e.g. Refs [10]), but just note that in this technique
propagators are 2 X 2 matrices with off-diagonal components being non-zero
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{a) e

{b}

Fig. 2. One-loop corrections to the correlator. Dashed lines correspond to thermal
pions.

only on mass-shell and proportional to statistical Bose or Fermi factors. Of
four propagator components only two combinations are independent which
can be chosen to be the retarded (or advanced) Green function having the
same form as at T = 0, and the distribution of the particle in the heat bath.
The retarded correlator Cy is expressed through these functions.

The contribution of Dlagram 2a is obtained from the tree graph multi-
plying it by the factor [ 2 (z«)’ exp(lkul Ty -8(k?) = LT? corresponding to the
closed thermal pion loop and using the second matrix element from Egs (5)

T? N(ipoyo + m)
(2a) 0°)0
Ca = 16F2 pi+m? (6)

For Diagram 2b using Eqs (5) we have

v _

R 4F2 / (2 )475G3(p+ k)7SImDR(k)(Cth(ko/2T) - sgn(ko)) . (7)

Substituting here Im Dy(k) = —w&(k*)sgn(ko) and Gr(k) = (k + m)
X (k? —m? + iesgn(ko))-l we obtain at w = ipy, F= 0
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cuw _ 3X d3k 1
R 2F2 | (27)%2k exp(k/T) -1

» (m — ipoyo) (P2 + m?) — 2ipeyok?
(75 + ma)" + 49383
T2

A% {ipyyo — m) .
= _16F3 o+ m + O0(T*). (8)

Similarly for Diagram 2c we have

C(zc) — 32 gA pﬁ p 5 / d°k 1
2F2 p2ym3 °'° (27)%2k exp(k/T) -1
k2
@y e ©

Due to an extra factor of k? in the numerator C¢%) = O(T*). It is easy to
show that Diagram 2d is also of order 7.

Let us compare our results with those of Ref. [7]. In that paper it was
shown that interaction of a nucleon with thermal pion gas does not shift
the physical pole in Minkowski space, but contributes to the residue at this
pole. In this region contrary to Euclidean point which we consider here only
diagrams 2a and 2c are relevant. Diagram 2b was not considered in Ref. [7]
since it has no pole at w? = m?. Indeed, it is easy to see that its real part
vanishes at the pole as (w? — m?)In|w? — m?|.

On the other hand as shown above at Euclidean point w = ipy, § = 0 the
leading O(T?) correction comes from Diagram 2b as well as from Diangram
2a. Diagrams 2c and 2d contribute to order O(T*). Besides, from Eq. (8)
it is seen that the contribution of Diagram 2b is of pole type (with the pole
at po = +im). This seeming paradox in fact disappears if one looks at the
corresponding imaginary part Im Cgb). Indeed, from Eq. (7) one easily gets
the following expression which has transparent physical meaning

6)%xt d*k d3k" 5 1
(3v) _ OY
tm g F? / (27)%2k (27{)32E’5 (k—k )exp(k/T) -1

X {(m - Yol{w — k)) [6(w —k-E)-bd(w—-k+ E')]
+(m-vw+k)[f(wtk-E)-6(w+k+E)}, (10)
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where E' = (m? + k'?)!/2. Integrating over k', we obtain

@by _ 32 B w? + m?
mCa™ = Torpm (m T o0

(w? — m?)/2uw? o B
) {exp((w2 —m?)/2w|T) - 1 (3w = m) — 9 )

(m? — w?)/2w?
exp((m? — w?)/2w|T) - 1

(9(m — w)I(w) — H(m + w)t?(—w))} (11)

It is seen that Ing b)(w, 0) at T € m is exponentially small everywhere
except a narrow region of width ~ T around the points w = +m. At these
points ImCU™ = (3AT/167 F?)(£1 — 7o) Im €™ (w, 0) is depicted in
Fig. 3. Substituting Eq. (11) into the dispersive integral of Eq. (2) it is easy
at T < m to reproduce Eq. (8).

{a) (b)

Fig. 3. Imaginary part of diagram 2b: (a) structure ~ 1 and (b) structure ~ 7o.

Thus, we see that at T # 0 there is a contribution to Im Cy due to
Diagram 2b. At w? > m? it corresponds to a process in which production of
a nucleon by the current is accompanied by induced production of a pion in
the presence of thermal pion gas. At w? < m? it describes inelastic scattering
of a thermal pion from the heat bath on the current with production of
a nucleon. This last process is analogous to the mechanism of Landau
damping in ordinary plasma. The two processes result in smearing of the
nucleon pole at w = +m over the region of width ~ T « m. This explains
why the contribution of Diagram 2b to Cg(ip,, 0) has a pole form.

In the same way considering the self-energy insertion in the Diagram 2c
one sees that due to an extra factor of k? in the numerator (see Eq. (8)) its
spectral density though being smeared over the region of width ~ T is now
of order ~ T®. So, from Eq. (2) its contribution to Diagram 2c¢ in Euclidean
region is ~ T*. The other part of ImC,(f ©) which corresponds to one of the
nucleons being on-shell is proportional to the real part of the self-energy
insertion which was calculated in Ref. [7] and is of order T?. However, the
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corresponding integrand in Eq. (2) is odd in w in this case and there is no
contribution to Cr(ipo,0).

Vanishing of O(T?) terms from Diagrams 2¢ and 2d in Euclidean region
can also be seen if one considers their behavior at large Euclidean time. To
this end it is necessary to take into account the nearest singularities in the
Fourier integral over p,. Consider for example Diagram 2¢. In the upper
half-plane of complex p, the corresponding expression in Eq. (9) has three
poles w = ipy, w = i(\/ m3 + k2 + k). Evaluating their contributions and
integrating over k afterwards it is easy to see that though each pole con-
tributes to order T2 in the integral [ dp, exp(ipot)Cr(w = ipo), however the
contribution of the first pole is canceled by the sum of contributions from the
second and the third ones. It is worth mentioning that only Euclidean times
t < 1/T make sense here, because Euclidean correlator is (anti)periodic in
t with a period of 2xT. Since T <« m, this means that one can really go as
far ast ~ 1/m.

Thus, we have calculated O(T?) corrections to the retarded correlator
of nucleonic currents at T < m in Euclidean region. These corrections
have a pole form though they are contributed by a non-pole diagram which
vanishes at the physical pole w? = m?. This is due to the fact that at T # 0
there is a cut along the whole real axis in w-plane. At this cut the correlator
Cr has an imaginary part which at T < m is effectively non-zero only in
the vicinity of the physical poles w = +m. The obtained corrections do
not change the factor exp(—mt) describing the correlator fall-off at large
Euclidean time and contribute only to pre-exponential factors.

In conclusion an important note is in order. Due to the current algebra
relations (5) the thermal corrections to the correlator (1) at 7?2 < F? are ex-
pressed through the zero-temperature correlators (0| 7 |0) and (0| ysn7fys |0)
multiplied by factors of order T?/F2. In saturating these correlators the
parity partner of the nucleon must also come into play. The problem will
thus become two-channel. The same happens in the case of correlators of
vector and axial currents. Presumably, the temperature-induced mixing of
parity partners will result in chiral symmetry restoration with formation of
parity doublets as suggested in Refs [11] on the basis of lattice calculations.
This possibility is now being under consideration and the results will be
published elsewhere.

Useful discussions with A.A. Abrikosov (Jr.), M. Dey, B.L. Ioffe, H.
Leutwyler and A.V. Smilga are gratefully acknowledged. I am indebted to
H. Leutwyler and A.V. Smilga for showing me the manuscript of Ref. [7]
prior to publication.



174 V.L. ELETSKY
REFERENCES

(1] L. McLerran, Rev. Mod. Phys. 58, 1021 (1986).
[2] J. Gasser, H. Leutwyler, Phys. Lett. 184B, 83 (1987); Nucl. Phys. B30T, 763
(1988); P. Gerber, H. Leutwyler, Nucl. Phys. B231, 387 (1989).
[3] A. Smilga, Nucl. Phys. B335, 569 (1990).
[4] B.L. Ioffe, Nucl. Phys. B188, 317 (1981); Errata B191 (1981).
[5] V. Bernard, Ui-G. Meissner, Phys. Lett. B227, 465 (1989).
[6] J. Dey, M. Dey, P. Ghose, Phys. Lett. 165B, 181 (1985).
[7] H. Leutwyler, A. Smilga, Bern University preprint BUTP 90/8.
(8] L.D. Landau, Zh. Eksp. Teor. Fiz. 38, 805 (1958).
[9] A.L Vainshtein, V.I. Zakharov, Usp. Fiz. Nauk 100, 225 (1970).
[10] A.J. Niemi, G.W. Semenoff, Ann. Phys. (N.Y.) 152, 105 (1984); V.V. Lebe-
dev, A.V. Smilga, Bern University preprint BUTP 89/25.
[11] C. DeTar, J.B. Kogut, Phys. Rev. Lett. 59, 399 (1987); Phys. Rev. D386,
2828 (1987); S. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar,
Phys. Rev. Lett. 59, 1881 (1987).



